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Abstract

I study the impact of grid expansion on long-run renewable investment spillovers

in wholesale electricity markets. Using a discrete choice model of wind project lo-

cation and a Difference-in-Difference design, I analyze a large-scale grid expansion

project in Texas. Results show $1.71 billion per year in lower emissions and $11 mil-

lion in increased annual payments to landowners due to wind investments in areas

with grid infrastructure. However, localized wind investments coupled with limited

transmission capacity have led to rising curtailments in recent years. This highlights

the need for a long-term planning approach to transmission policy, which is essential

for achieving decarbonization.
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1 Introduction

Massive investment in high-capacity electricity transmission lines is crucial for achieving

rapid decarbonization (Larson et al. 2021). In the US, most renewable energy is generated

far from the demand centers, necessitating high capacity transmission lines to connect

supply with demand. Investments in grid expansion can also accelerate the energy tran-

sition. However, the important spillover effect of transmission expansion on renewable

generation markets remains an understudied topic in economics (Davis, Hausman, and

Rose 2023).

In this paper, I provide the first causal estimates of the effect of transmission expan-

sion on long-term investment in renewable energy. However, a classic chicken-and-egg

problem exists with transmission planning: building new transmission depends on gen-

eration, while new generation is dependent on the availability of transmission capacity

(Renewable Energy World 2007). Texas addressed this problem in 2008 by announcing

a massive grid expansion project aimed at integrating the growing wind generation in

West Texas to the demand centers in the East (Lasher 2008). Thus, this context offers an

excellent opportunity to study the research question.

I answer this question using a unique combination of model and design based ap-

proaches. I first use a discrete choice model to estimate the likelihood of siting a wind

project in locations with grid expansion. Next, I use a Difference-in-Difference strategy

to examine whether locations with grid expansion receive higher levels of wind invest-

ment than those without. I then use results from both approaches to quantify the social

benefits due to lower emissions and the private benefits due to higher lease payments to

landowners.

I leverage rich spatial and temporal data from the rollout of a large-scale transmission

expansion project called Competitive Renewable Energy Zones (CREZ) in Texas. I com-

bine spatial data from the Public Utilities Commission of Texas on locations announced

to site grid infrastructure in 2008 with wind project data from EIA Form 860, detailed
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wind resource quality data from NREL, and land characteristics from USDA and the

Real Estate Center at Texas A&M University.

I develop a model of location choice where a wind developer selects a project site to

maximize profits. The model shows that, conditional on wind resource quality and site

characteristics, locating near transmission infrastructure minimizes costs for the project.

I take this model to the data and use a conditional logit model (McFadden 1974) to

estimate the probability of locating in a county with CREZ transmission. This analysis

uses data on all utility-scale wind projects in Texas that began operation from 2000 to

2020.

Results of the conditional logit model show that wind projects were 20 percentage

points, or 46 percent, more likely to locate in a CREZ county than in other locations.

Coefficient estimates imply a willingness to pay (WTP) of $1,137 per acre or $2,808 per

MW of wind capacity to locate in these areas. This WTP is almost twice the annual

average lease payment that wind projects pay to landowners for a MW of wind capacity

in the US (Center for Sustainable Systems 2023). For an average wind project of 146 MW,

these results translate to approximately $12.3 million in higher payments to landowners

over the 30-year lifespan of the project.

I conduct a variety of heterogeneity analyses. The results show a positive relationship

between project size and the likelihood of choosing a CREZ county. Interestingly, wind

projects have become less likely to site in CREZ locations in recent years due to increasing

congestion in these regions. In 2020, projects were 12 percentage points less likely to

select CREZ locations compared to other areas. Finally, I find that the baseline results

are robust to changes in choice set construction in the logit model.

Next, I use a difference-in-differences analysis in an event study framework to esti-

mate whether counties announced for transmission infrastructure siting see higher wind

investments over time. I employ the Callaway and Sant’Anna (2021) estimator to ac-

count for potential bias in the Two Way Fixed Effects estimator in cases of treatment
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effect heterogeneity and staggered treatment adoption. I use Coarsened Exact Matching

to address the lack of common support in conditioning covariates in the regression spec-

ification. This matching step creates a set of counties that are comparable across a wide

range of characteristics: wind resource quality, terrain characteristics, and land value

The event study indicates that locations with CREZ infrastructure saw higher levels of

wind investment compared to other locations. Results also suggest a lagged effect in the

materialization of wind investments post transmission announcement. The aggregate

treatment effect using the Callaway and Sant’Anna (2021) estimator is about 100 MW

of greater annual wind investment. This effect is 1.08 standard deviations of the wind

capacity in control counties. This result is robust to several threats to identification and

specification checks. This include selection into treatment due to lobbying efforts for or

against siting CREZ transmission, investment spillovers to control counties, anticipation

of CREZ announcement, and placebo test using canceled CREZ locations as treatment.

The wind investment driven by transmission expansion in Texas resulted in signif-

icant public benefits from lower emissions and private benefits to landowners through

higher lease payments. A back of the envelope calculation shows that this wind invest-

ment prevented approximately $1.71 billion worth of emissions annually. Combining the

willingness to pay estimates from the conditional logit model with the aggregate treat-

ment effects from the event study analysis, I find that annual payments to landowners

in the CREZ counties are approximately $11 million higher than in other locations.

The findings from this paper offer insights into renewable generation investments

due to transmission expansion in other wholesale markets, such as the Southwest Power

Pool and Midwest ISO. Recently, an increasing number of renewable projects have been

dropping out of development due to inadequate transmission capacity and long inter-

connection wait times in these markets (Penrod 2022). Investing in high capacity trans-

mission lines could address some of these issues. However, grid expansion projects are

large capital investments, paid ultimately by the ratepayers. The CREZ project cost about

3



$6.8 billion and generated over $1.72 billion in annual public and private benefits, trans-

lating to a payback period as short as four years. Ignoring these long-run benefits can

vastly understate the true benefits of transmission expansion.

One consequence of localized wind investment and limited transmission capacity is

the increasing wind curtailments observed over the last few years. Regression estimates

suggest average hourly curtailment of 120 MW during the periods of high wind gen-

eration in the West region of Texas in 2020. These curtailments translate to about $156

million in excess annual carbon and local emissions, partially offsetting some of the ben-

efits. This finding underscores the importance of a long-term approach to transmission

planning that considers these localized long-run investment responses.

Related Literature. Electricity grid expansions are major policy undertakings, often

costing billions of dollars and several years of planning. This paper examines the im-

pact of transmission projects on long-run renewable investment. Thus, more broadly

this paper contributes to the extant literature focusing on the effects of energy policies

on renewable investment (Metcalf 2010; Bento, Garg, and Kaffine 2018; Johnston 2019;

Butters, Dorsey, and Gowrisankaran 2021; Holland, Mansur, and Yates 2022; Aldy, Ger-

arden, and Sweeney 2023; Feldman and Levinson 2023; Gonzales, Ito, and Reguant 2023;

Fullerton and Ta, forthcoming).

This paper also builds upon the literature on the effects of market integration in

wholesale electricity markets (Borenstein, Bushnell, and Stoft 2000; Joskow and Tirole

2000, 2005; Mansur 2007, 2008; Borenstein et al. 2008; Borenstein and Bushnell 2015).

Previous studies have mainly focused on the fossil fuel sector without the entry of re-

newable firms over time. By examining investment spillovers in the increasingly signif-

icant renewable sector, I contribute to an area with relatively sparse economics research

(Davis, Hausman, and Rose 2023).

A related strand of literature examines the interaction between transmission con-

straints and allocative efficiency in electricity markets due to changes in market struc-
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ture (Bushnell, Mansur, and Saravia 2008; Woerman 2023; Cicala 2022). In contrast, I

analyze the investment effects of electricity transmission expansion while keeping the

market structure fixed. This allows me to isolate the impact of transmission expansion

from changes due to changes in market structure or dispatch mechanism.

This paper also contributes to the nascent literature on the market and environmen-

tal impacts of transmission expansion. For instance, Ryan (2021) studies the impact of

transmission expansion on market power in the Indian electricity market. My study uses

the data and context of a large scale grid expansion in Texas. A number of recent papers

have examined the impact of transmission expansion in the similar context. These stud-

ies examine the effect of transmission expansion on lower wholesale prices (LaRiviere

and Lyu 2022), decline in emissions due to lower congestion (Fell, Kaffine, and Novan

2021), and reduction in fossil fuel market power due to integration of wind generation

(Doshi 2024). While recent studies have primarily focused on short-run outcomes, I add

to this literature by looking at investment decisions of wind developers.

Finally, my study is most closely related to Gonzales, Ito, and Reguant (2023). The

authors look at the anticipatory investment in utility scale solar energy and wholesale

prices in response to transmission line expansion in the Chilean electricity market. While

I focus on investment in utility scale wind energy, my paper differs from theirs in two

key aspects. Methodologically, I model the entry decision of wind projects using a dis-

crete choice framework. Additionally, I use a Difference-in-Difference analysis which

allows me to quantify both the public benefits due to lower emissions and private ben-

efits to landowners, a novel contribution to the literature. Further, I also provide the

first evidence of increasing curtailments due to localized wind investments and fixed

transmission capacity.

The remainder of this paper is organized as follows. Section 2 describes the institu-

tional context and Section 3 describes the data and shows some descriptive statistics. I

present the theoretical model of wind project location choice in Section 4 and Section 5

5



takes this model to the data. Section 6 presents the event-study analysis of wind invest-

ment in response to transmission expansion. Section 7 provides evidence of rising wind

curtailment and Section 8 concludes.

2 Institutional Details

2.1 The Texas Electricity Market

The Texas electricity market is one of the major deregulated wholesale electricity mar-

kets in the US, managed by the Electric Reliability Council of Texas (ERCOT) as its

independent system operator. ERCOT operates separately from the Western and East-

ern interconnections, the other two major interconnections in the US. Most of Texas’s

wind capacity is concentrated in the highly wind productive West and Panhandle re-

gions, while the majority of fossil fuel power plants are situated in the East and South,

near the major demand centers.

Due to the deregulated nature of the market, the generation/supply side comprises

of a high proportion of independent power producers (IPPs). These are independent

firms that build and operate their own power plants. In Texas, IPPs are responsible for

building most of the wind projects, consistent with the pattern across the US (Doshi and

Johnston 2024). Electricity transmission is owned and operated by non-profit public util-

ities known as Transmission Service Providers (TSPs), which are regulated by the Public

Utilities Commission of Texas (PUCT). TSPs are responsible for the transmission and

distribution of electricity from generation to demand centers. They also oversee mainte-

nance and expansion of the electricity grid in coordination with ERCOT and PUCT.
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2.2 Competitive Renewable Energy Zones

The Competitive Renewable Energy Zones (CREZ) was a large-scale transmission expan-

sion project aimed at integrating electricity generation from wind farms in West Texas

with the major demand centers in the East. The Public Utilities Commission of Texas

(PUCT) announced CREZ in 2008 following a multi-year process to identify the locations

and scale of the necessary transmission investments (NREL 2008). The project involved

constructing approximately 3,600 miles of 345 kV transmission lines between new sub-

stations across the Panhandle, West, and East Texas, at a projected cost of $4.95 billion

(PUCT 2009). The transmission lines were built over a period of 2011 through 2013 with

a realized cost of approximately $6.8 billion (Lasher 2014).

ERCOT worked with several Transmission Service Providers to identify potential

routes for the proposed transmission lines and associated infrastructure. ERCOT adopted

an incremental approach to transmission planning, effectively overlaying the new CREZ

lines on the existing grid in West Texas. In other words, the new system was not even

indirectly connected to the existing grid in West Texas. This system was designed to pre-

vent widespread congestion and overloads in the existing low-voltage system due to the

increased wind generation in the West and Panhandle regions (ERCOT 2008). I exploit

this feature of the CREZ project development to compare locations that received CREZ

infrastructure investments (treatment group) with with other locations (control group)

in the existing transmission network.

2.3 Wind Project Development

Developing a wind project is a multi-step process that typically takes about 3-4 years,

depending on market conditions (AWEA 2019). The initial steps involve wind resource

assessment and land permitting. Wind resource assessment is essential to determine

the economic viability of a site. It is also informative about future decisions on the
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type of technology (such as turbine model) and project financing. Land permitting and

acquisition involves acquiring the necessary rights and permits to build a project at a

specific location. This includes getting permits from the respective local (e.g., county

and municipality) and state authorities (WindExchange (DOE EERE), n.d.). In Texas,

siting of wind projects is regulated at the county level and there are very few counties

with restrictions on development of wind projects (Enterline, Valainis, and Hoen 2024).

After resource analysis and permitting, the next step is entering the interconnection

queue. This entails conducting necessary interconnection studies to determine whether

the grid can support the project and to identify the equipment needed to connect the

project to the grid (Johnston, Liu, and Yang 2023). Often concurrently, projects seek

financing and power purchasers or offtakers. Projects may choose to sell their power di-

rectly into the wholesale market or sign a long-term contract(s) with a potential buyer(s).

Project financing is crucial for the subsequent procurement of wind turbines and con-

struction, after which the project typically operates for about 25 to 30 years. A schematic

of these steps with an approximate timeline is shown in Appendix Figure E1.

3 Data and Descriptive Statistics

3.1 Data

I use data on all utility-scale wind projects in Texas from 2001 to 2020 from the Energy

Information Administration (EIA) Form 860. This data includes information on genera-

tor characteristics, such as nameplate capacity (MW), location, and year of operation for

all generators greater than 1 MW in size. I combine this data with detailed information

on wind resource quality at the project location from the National Renewable Energy

Laboratory’s Wind Integration National Dataset (Draxl et al. 2015). This dataset includes

wind speed, capacity factor, and site-specific wind turbine class rating for 2 km x 2 km

grid cells for all potential wind energy sites across the US.
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To identify locations selected to site CREZ transmission lines and substations, I uti-

lize ERCOT’s Transmission Project and Information Tracking and supplement this with

information from the Public Utilities Commission of Texas. The data only indicates the

counties where these substations are located, so I refer to them as “CREZ counties.”1

Local governments often enact regulations to restrict or regulate the siting of wind

projects in their jurisdictions. These regulations, commonly known as setbacks or wind

ordinances, specify limits on factors such as turbine size, height, noise, and maximum

capacity. In Texas, all permitting and siting of wind projects occur at the local level

(Enterline, Valainis, and Hoen 2024). I collect data on the presence of wind ordinances

from the Department of Energy’s WINDExchange Ordinance Database and hand-collect

data for counties with missing information.2

Additionally, I collect various county-level data on land value and characteristics.

This includes data on median and average farm value ($ per acre) and average farm size

(acres) from the USDA Census of Agriculture for the years 2002, 2007, 2012, 2017, and

2022. I linearly interpolate to construct annual values from 2001 to 2020. As another

measure of land value, I use data on average rural land prices ($ per acre) based on

annual land transactions from the Real Estate Center at Texas A&M University.3 Finally,

using 30m × 30m grid data from the National Elevation Dataset, I construct measures of

average elevation and terrain ruggedness, defined as the standard deviation of elevation

for each county.

1. These substations serve as terminal points for high-voltage transmission lines and hubs for nearby
generating plants to deliver power to the grid. Exact substation locations are restricted for national security
reasons.

2. Most Texas counties do not have wind ordinances for wind projects. Out of 254 counties, I find that
only five counties (Dallas, Ellis, Kleberg, Taylor, and Wichita) have enacted wind ordinances for both small
and large wind projects. Land use restrictions in wind ordinances can affect investment in wind energy
and may correlate with the siting of transmission infrastructure.

3. The average rural land price per acre is the four-quarter moving average of the median prices per
acre. Regional prices per acre are weighted by markets segmented by property size. Figure E2 in Appendix
shows the seven land market regions defined by the Real Estate Center at Texas A&M University (Texas
Real Estate Research Center, n.d.).
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3.2 Descriptive Statistics

Table 1 presents the summary statistics of key variables used in the empirical analysis,

categorized by county type. On average, CREZ counties exhibit higher wind speeds

and greater productivity. They are also situated at higher elevations but are slightly

more rugged (measured by standard deviation of elevation) compared to non-CREZ

counties. Land is cheaper in CREZ counties, as evident from lower farm values and

land prices. The large standard deviation in farm variables in non-CREZ counties also

indicates significant heterogeneity across counties in East and South Texas. Lastly, both

types of counties have a low prevalence of wind ordinances.4

Table 1: Summary Statistics

CREZ Counties Other Counties

Mean Std. Dev. Mean Std. Dev.

Wind Speed (m per s) 7.92 0.46 7.35 0.67

Capacity Factor 0.45 0.03 0.41 0.05

Site-Specific Turbine Class Rating 2.00 0.46 3.00 0.50

Average Elevation (m) 585.36 292.93 396.52 375.44

Terrain Ruggedness 22.24 7.98 20.01 19.13

Average Land Price ($ per acre) 1465.08 1036.57 2195.14 1477.15

Average Farm Size (acre) 1649.55 2203.05 1814.65 4574.89

Median Farm Size (acre) 373.46 424.12 461.12 2056.91

Average Farm Value ($ per acre) 1686.15 1737.74 1860.85 1303.24

Wind Ordinance (0/1) 0.03 0.16 0.01 0.08

Notes: Sample is a balanced panel of all counties in Texas from 2001 to 2020, N = 5,313. CREZ
Counties are the counties that had a substation as a part of CREZ Transmission Expansion.

Figure 1 shows a map of Texas with wind projects and the locations of CREZ sub-

stations. Two interesting observations emerge. First, there is a cluster of wind projects

within and near CREZ counties, suggesting that the availability of transmission infras-

4. Table D1 in Appendix shows the summary statistics at the wind project level. Approximately 42

percent of projects are located in CREZ counties, with the average project size being 146 MW and a
standard deviation of 90 MW.
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tructure could have driven renewable energy growth in these areas. Second, there is

another cluster of wind projects near the Texas Gulf Coastal region. These are some of

the more recent wind projects, which may be indicative of developers shifting away from

the West and Panhandle regions due to increasing congestion.

Figure 1: Wind Projects and CREZ Counties
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Notes: This figure shows all wind projects in Texas greater than 1 MW in nameplate capacity (MW)
that started operations in 2001 to 2020. Shaded counties are the counties with substations from CREZ
expansion.

4 Theoretical Model of Wind Project Location Choice

In this section I develop a theoretical model of wind project location choice which serves

as the microfoundation of the discrete choice model I estimate in Section 5. I make

several assumptions in line with the institutional context to derive the location choice

specification.
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Wind developer i chooses location j to site its wind project in order to maximize the

present value of annual profits. The static profits in year t of operations is given by:

πijt = pitQjt − OMijt (1)

where, pit is the per MWh price for wind power received by project i in year t, Qjt is

the energy production from the project at location j in year t. Energy production is a

function of wind resource quality, turbine technology, and the nameplate capacity of the

project. OMijt is the annual operations and maintenance costs. Denoting r as the annual

discount rate and T as the life of the project, the present value of expected profits is,

Πij =
T

∑
t=1

(
1

1 + r

)t
E

[
pitQijt − OMijt

]
− Fij (2)

Equation 2 includes fixed costs incurred at the time of project siting st location j, de-

noted by Fij. I make two simplifying assumptions to this microfoundation. First, I

assume prices are location invariant. Developers often sign long-term contracts that fix

the price per MWh of the output with pre-specified escalations to account for inflation.

However, these off-take decisions and project financing occurs after site selection (AWEA

2019; Doshi and Johnston 2024). Second, I approximate the expected energy production

as a flexible function of wind resource quality at site j. This resembles the resource

assessment step of wind project development.5

Incorporating these approximations and dropping the time subscript, the profit func-

tion can be written as:

Πij = γ(r)
[
pi f (windj)−E[OMij]

]
− Fij (3)

5. In other words, I do not make any assumptions on the technology choice of the project. As outlined
in Section 2.3, technology choice (turbine model) occurs after site selection and is often influenced by the
chosen location, project size, and financing.
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where γ(r) is the geometric sum of discount rate i.e. γ(r) = 1
r

(
1 − 1

(1+r)T

)
. OMij

denotes the expected operations and maintenance (O&M) costs incurred in operating a

wind project. Fixed costs Fij includes site specific characteristics (e.g. local regulation,

land value, terrain characteristics) that influence the costs of building a project.

4.1 Comparative Statics from the Model

The choice of optimal location lj enters the profit function through wind resource quality

and O&M costs at lj. Access to transmission affects the location choice problem through

its effect on fixed costs. The developer considers how far to locate from a substation and

incurs cost as a function of the distance.6 This can be shown by slightly modifying the

profit function in Equation 3 as follows:

Πi(lj, κ) = γ(r)
[
pi f (lj)−E[OMi(lj)]

]
− [Ci + κ × lj]︸ ︷︷ ︸

fixed costs

(4)

where f (lj) is the wind resource quality at lj and OMi(lj) is the operations and main-

tenance costs at lj. Fixed costs are combination of two main components. First is the

cost incurred in purchasing wind turbines and building the wind project denoted by Ci.

Second is the cost of constructing a spur transmission line at lj, denoted by the product

κ × lj where κ is a positive cost multiplier.

Spur transmission line is a short transmission line that connects the generator to the

bulk transmission grid (Andrade and Baldick 2016). The cost of building spur lines is

borne by the developer of the project. The schematic in Figure 2 illustrates the cost

allocation between spur transmission and bulk transmission between developer and end

use consumers of electricity in Texas.

6. Electrical substations increase the voltage of electricity generated by power plants in order to make it
efficient for transmission using long distance transmission lines. Therefore, these substations serve as the
point of injection of electricity from the power plants into the grid.
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Figure 2: Cost Allocation of Transmission Equipment in Texas Electricity Market

Notes: This figure illustrates cost allocation of transmission equipment in Texas for a new generation
project. POI is the Point of Interconnection and typically comprises of connecting with a transmission
substation which is part of the bulk transmission system. Source: Andrade and Baldick (2016)

The cost multiplier κ comprises of costs associated with building a unit length of spur

line (of a specific voltage) at location j. These costs are mainly due to local land value

and terrain features. In Texas, on average spur lines cost about $1.114 million/mile for

on-shore wind projects, borne entirely by the project developer (Andrade and Baldick

2016).

The indirect profit function corresponding to the optimal location l∗j is,

Π∗
i (κ) = Πi(l∗j (κ)) = γ(r)

[
pi f (l∗j )−E[OMi(l∗j )]

]
−

[
Ci + κ × l∗j

]
(5)

Application of the envelope theorem on Equation 5 shows,

dΠ∗
i (κ)

dκ
=

∂Π∗
i (κ)

∂κ
(6)

= −l∗j (κ) (7)

Equation 7 shows a negative relationship between the change in profit with respect to κ

and the optimal location function l∗j (κ). In other words, everything else equal, increase

in costs associated with building spur lines (κ) leads to a decline in optimal profits.
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Thus, locating near the point of interconnection (substations) is cost minimizing for the

developer.

4.2 Deriving the location choice problem

Denoting y as the year when the project makes the location choice, the utility specifica-

tion for the choice problem corresponding to the profit function in Equation 4 is,

Uijy = β · f (windj) + ΛXjy + ϵijy (8)

where f (windj) is the flexible function of wind resource quality at site j. This function is

an approximation of E(Qj) during the site-selection process. The returns from location

at a site with better wind quality is captured by the parameter β.

Vector Xjy includes for site-specific factors that affect project’s O&M costs and fixed

costs. This includes terrain characteristics and local regulations. Other than land lease

and tax payments, most costs are project specific like purchasing turbines, costs of tur-

bine operations and maintenance (Wiser, Bolinger, and Lantz 2019). These project spe-

cific costs are realized post site selection, and thus drop out from the location choice

problem.

The location choice of a project is also dependent on the availability and access to

transmission lines at site j. The final assumption in this microfoundation is that the

local transmission network at any site j can accommodate the wind project in year y.7

Since the CREZ transmission was overlaid on the existing transmission network (i.e. not

directly connected with the existing network ERCOT (2008)), I use a binary indicator

specifying whether location j received CREZ substation which serves as the point of

7. This assumption stems from ERCOT’s interconnection policy of connect and manage which allows
generators to connect to the grid by focusing on local upgrades instead of broader network upgrades.
This has shown to accelerate the interconnection process in the Texas electricity market while connecting
a large capacity of generation to the grid (Howland 2023).
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interconnection for a project,

Uijy = α · crezjy + β · f (windj) + ΛXjy︸ ︷︷ ︸
δjy

+ϵijy (9)

where crezjy is an indicator for the presence of a CREZ substation in location j and year

y. Assuming errors follow Type 1 Extreme Value distribution, the probability of choosing

location j from a choice set with J alternatives is:

Prij = Pr(Uijy ≥ Uij′y, ∀ j′ ̸= j) (10)

= Pr(ϵij′y − ϵijy ≤ δj′y − δjy, ∀ j′ ̸= j) (11)

=
exp(δjy)

∑j′ ̸=j exp(δj′y)
(12)

This is the model I estimate in Section 5.

5 Estimating the Location Choice Model

I estimate the utility model in Equation 9 using a conditional logit framework (McFadden

1974) and data on all utility scale wind projects in Texas from 2000 to 2020. Recall that

the utility of a project i choosing location j in year y is,

Uijy = α · crezjy + β · f (windj) + ΛXjy + ϵijy (13)

where crezjy is an indicator for whether county j has a CREZ substation in year y when

project i makes the location choice. f (windj) flexibly controls for wind resource quality

in county j (cubic spline of wind speed, capacity factor, and site specific turbine class

rating).
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Vector Xjy includes a wide variety of county and year of operation specific character-

istics that can influence location choice. These variables include land price from housing

market transactions ($ per acre), average and median farm size in a county (acre), average

farm value in a county ($ per acre), local regulation (wind ordinance), terrain elevation,

and terrain ruggedness measured by the standard deviation of terrain elevation.

In this model, a project’s choice set consists of locations (counties) with similar wind

resource quality and other site-specific characteristics. For each project, I use a K-Nearest

Neighbor algorithm to construct a choice set of candidate counties with similar wind

speeds, capacity factor, site specific turbine class rating, terrain ruggedness, terrain el-

evation, presence of local regulation (wind ordinance), average and median farm size,

and average farm value.

Figure 3 shows a heat map of counties across project choice sets when a project can

choose from a set of 5 similar counties (i.e. setting K as 5 in the K-Nearest Neighbor

Algorithm). While 168 distinct counties appear in the choice set across all the projects,

counties in the Panhandle and the West appear most frequently across the choice sets.

5.1 Results

Table 2 shows the results of the conditional logit model of project location choice. Co-

efficient estimate of crez across all the specifications suggest that everything else equal,

projects are more likely to select a CREZ county. This effect is robust across specifications

that includes wide array of site-specific variables affecting project site selection.

The preferred specification in Column (4) suggests that a wind project is 20 percent-

age points more likely to site in a location with CREZ infrastructure. This specification

includes the full set of controls accounting for variation affecting project site selection

and CREZ transmission. This includes region fixed effects, variables measuring wind

resource quality, land value, and regulations restricting development of wind projects.
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Figure 3: Heat Map of Counties in Project Choice Sets
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Notes: This figure shows a frequency map of counties appearing across wind project choice sets from
K-Nearest Neighbor algorithm with K = 5 (i.e. a project can choose from a set of 5 counties). Darker shade
indicates that a county appears in the choice set of multiple projects. Counties not part of any choice set
are shown in grey. CREZ counties are shown in hash pattern.

Since the average probability of being located in a CREZ county is 0.42, this translates to

a 47 percent effect.

Another way of interpreting these estimates is through the implied Willingness To

Pay (WTP) to site a project in a CREZ county. A limitation in constructing WTP estimates

in this setting is that I do not observe leasing prices or information on leasing contracts

that wind projects sign with landowners. Instead, I use average farm value ($ per acre)

from USDA as a proxy for value of land. The corresponding WTP is the ratio γ/α, where

α is the coefficient of crez and γ is the coefficient for average farm value in Equation 13.

Using the coefficient estimates from Column (4) in Table 2, I find that compared to

other locations, a wind project is willing to pay approximately $1,137 more per acre to

site in a CREZ county. This WTP is about 60 percent of the average farm value ($1,952 per

acre) over the period of the sample. Land use requirements for wind projects are project-
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Table 2: Results of Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez 0.866*** 1.003*** 1.068*** 1.086***

(0.178) (0.186) (0.212) (0.212)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 168 168 168 168

Observations 1,030 1,030 1,030 1,030

Log Likelihood -288.3 -272.5 -268 -262.1

Odds Ratio of crez 2.379 2.726 2.910 2.962

Average Marginal Effect 0.159 0.179 0.195 0.197

Notes: This table shows the coefficient estimates of conditional logit model of
wind project location choice. Sample is all wind projects in Texas, larger than 1

MW in size that began operation in 2001 to 2020. crez is an indicator for whether
the chosen county has a CREZ substation. Wind Resource Controls include cu-
bic spline of wind speed, capacity factor, and site-specific turbine class rating.
Site-specific controls include average land prices, median farm acreage, average
farm size (acre), median farm size (acre), average farm value ($ per acre), aver-
age and standard deviation of terrain elevation, and an indicator for presence of
wind ordinance. Region Fixed Effect is a region specific indicator for West, Pan-
handle, East, and South regions. By design, each project faces a choice set of 5

distinct counties. Total Alternatives is the total number of distinct counties across
all choice sets. Robust standard errors clustered at the project level reported in
parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1

and location-specific, with the exact area determined after site and turbine selection.

With approximately 2.47 acres per MW required for siting wind turbines and other

equipment (Department of Energy 2015), these estimates imply a WTP of approximately

$2,808 per MW of wind capacity in CREZ locations.8 Compared to the average annual

lease payment of $3,000 per MW (Center for Sustainable Systems 2023), these results

8. Land area for wind projects is often difficult to predict beforehand and depends on various factors
such as project size, land availability and cost, turbine size, and layout. There is also an important dis-
tinction between direct and indirect land use for wind projects. Direct use refers to land that is physically
transformed for siting wind turbines and related infrastructure like access roads, turbine foundation, and
tower. This area is permanently occupied for the life of a wind project and cannot be used for other
purposes. According to (Department of Energy 2015), direct use area is estimated at 2.47 acres per MW,
although this can vary by location and land-use definitions. Indirect use area refers to land not directly
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suggest that wind developers are willing to pay almost double to site in CREZ locations.

For an average project of about 146 MW in size and 30 years of operation, these estimates

imply approximately $12.3 million in higher payments to the landowners.

5.2 Heterogeneity and Sensitivity Analysis

I conduct a variety of heterogeneity analyses along the dimensions of project size, time,

phased extensions, and turbine model selections. I also test whether the baseline results

are sensitive to changes in choice set construction.

The likelihood of choosing a location may vary by project size. To analyse this, I

allow the utility specification in Equation 13 to vary by project size by including the

interaction between crez and nameplate capacity. Larger wind projects also face higher

costs of leasing land and other constraints to project development. Using nameplate

capacity serves as a reasonable proxy because larger projects, on average, require more

area. Therefore, I also include interactions of project capacity with farm value and farm

size to account for variations in land cost by project area.

Table A1 in the Appendix shows the coefficient estimates of the corresponding con-

ditional logit model, and Figure A1 shows the average marginal effect of crez by project

capacity. Figure A1 indicates that larger projects are more likely to select locations with

transmission expansion. For the preferred specification with full controls, the average

marginal effect curve is an increasing function of nameplate capacity with a decreasing

slope. This suggests that while larger projects are more likely to site in CREZ counties,

they also face higher costs and siting restrictions. This finding could indicate that recent

projects are moving away from CREZ counties due to increasing congestion.

Next, I analyze how the likelihood of choosing CREZ locations has evolved over

time. Since I do not observe the exact year when a project makes the location choice,

impacted by the project and can be used for other purposes like farming or ranching. Utility-scale projects
typically require 85.24 acres per MW of indirect use land (Denholm et al. 2009).
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I use the year when the project begins operation as a proxy for the time of location

choice. I estimate the utility specification in Equation 13 by allowing the coefficient on

crez to vary with a quadratic polynomial of the linear time trend of operating year. The

coefficient estimates are reported in Table A2, and Figure A2 shows the average marginal

effect of crez over time.

The average marginal effect of choosing a CREZ county in Figure A2 follows an

inverted U-shaped pattern. Interestingly, the marginal effect is negative post-2018, indi-

cating that, on average, projects were less likely to site in a CREZ county compared to

similar locations. For instance, in 2020, wind projects were approximately 12 percentage

points less likely to site in a CREZ location than elsewhere.

Wind projects are often developed as phased expansions of existing projects in the

same or nearby counties.9 About 45 percent of projects, representing approximately 40

percent of the total wind capacity in the data, are expansions of existing projects. These

expansions are often located in the same county as the other phase(s). The likelihood of

choosing a location could be higher if the project is an expansion and the existing project

is located in that county. To test if the siting of phased expansions can explain some of

these findings, I estimate a utility model that includes the interaction of crez with an

indicator for whether a project is part of a multi-phase expansion.

The coefficient estimates in Table A3 are similar in magnitude to the baseline esti-

mates in Table 2. As expected, the interaction term is positive, suggesting that multi-

phase projects are more likely to choose CREZ locations; however, this effect is not

precisely estimated. Figure A3 shows the average marginal effect of selecting a CREZ

location for single and multi-phase projects. Across specifications, multi-phase projects

are approximately 5 to 7 percentage points more likely to locate in a CREZ county than

single-phase projects.

9. Although each project has a unique EIA Plant Code and Generator ID combination, the expansions
can share a common EIA Plant Code. In the EIA Form 860, projects part of a phased expansion often share
a common name of a master project or phase name, even if they end up having different plant codes. I
collect information by hand for projects with missing data on master project or phase name.
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Next, I explore whether turbine model selection affects proejct site selection. While

turbine models are chosen after site selection and are often conditional on project fi-

nancing, preference for specific turbine technology might affect site selection (Doshi and

Johnston 2024). I estimate the model in Equation 13 by allowing the coefficient on crez to

vary by the square of the rotor diameter of the chosen turbine model. Table A4 reports

the coefficient estimates for the conditional logit model.

Figure A4 shows a negative relationship between turbine size and the average marginal

effect of choosing a CREZ county across all specifications. Projects with rotor diameters

greater than 120 meters are less likely to locate in a CREZ county. The average turbine

size was over 120 meters for projects that began operation post-2018, indicating that this

effect could be driven by some of the recent projects locating outside of CREZ regions as

shown in Figure A2.

These results could, in part, be driven by the choice structure of restricting the num-

ber of choices for each project to 5 counties. To address this, I estimate the conditional

logit model by expanding the number of counties in the choice set for each project to

10. Table A5 in Appendix shows that the coefficient estimates for crez and the associated

average marginal effects are similar to the baseline estimates.

As another test of sensitivity to the choice structure, I run the Nearest Neighbor

algorithm at the individual site level, allowing each project a choice of 100 potential

sites.10 Since most of the variation across locations is at the county level, I then aggregate

site-specific choices to the county level for the conditional logit estimation. Thus, the

number of location choices varies from 2 to 22 counties, with the average choice set

comprising of 5.5 counties. Table A6 in the Appendix shows that the coefficient estimate

and the average marginal effect of crez are very similar to the baseline estimates.

10. Each site is a 2 km by 2 km grid of potential wind project locations from NREL’s Wind Toolkit. For
K = 100, each project faces a choice of 100 potential sites for the project location. Recall that the site
specific wind resource data is also from NREL’s Wind Toolkit. I combine data on other location specific
characteristics like average farm size and value, and wind ordinance which is at the county level.
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6 Wind Investment in CREZ Locations

In this section, I analyze whether locations with transmission investment also saw higher

wind investment in the long run. The Competitive Renewable Energy Zones (CREZ)

Transmission Optimization Study in 2008 provided the first comprehensive information

on CREZ transmission expansion, connecting locations from West Texas to East Texas

(ERCOT 2008). I use the announcement year of this study, 2008, as the treatment year

and the CREZ locations as the treatment group.

Using a balanced panel of county-level data from 2000 through 2020 and a Differences-

in-Differences design, I examine whether treated counties saw higher levels of wind

investment post-treatment. I estimate the following event study specification:

yit = αi + δt + ∑
k ̸=−1

βk · crezi × 1{Kt = k}+ X′
itΠ + ϵit (14)

where yit is the outcome of interest. I use total wind capacity in county i in year t

and average size of wind projects in a county (total nameplate capacity/total number

of projects) as the dependent variables for this analysis. 1{Kt = k} is the set of relative

year indicators from 2000 to 2020, and crezi is a binary variable that specifies whether

a substation for CREZ lines was sited in county i. αi and δt are county and year fixed

effects respectively, and ϵit is the random error term clustered at the county level.

The parameter of interest, βk is identified from within county variation in wind in-

vestment in treated vs. control counties relative to the announcement year of 2008. The

vector Xit includes an array of controls correlated with CREZ locations and wind in-

vestment. These variables include cubic polynomial of wind speed, site-specific capacity

factor, terrain elevation and ruggedness, and average farm value and farm size to control

for land value. County fixed effects account for unobserved and time-invariant county-

specific factors. Year fixed effects control for common time specific shocks, for example,
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expiration of the Production Tax Credit in late 2012 and its subsequent extension in early

2013.

The main identification assumption in Equation 14 is that of parallel trends between

the control and treated counties in the pre-announcement period conditional on the vec-

tor of controls in Xit. These variables are a combination of pre-treatment characteristics

like wind resource quality and time varying factors like land value are correlated with

CREZ locations and control for differential trends in wind investment amongst treat-

ment and control locations. Conditioning on these variables allows for a more robust

inference (Roth et al. 2023).

Any unobserved factor that could differentially affect wind investment across loca-

tions and is correlated with crezi can bias the estimates of βk. However, Texas did not see

any transmission line expansions connecting West to the East beyond CREZ, ruling out

this concern. Another violation of the identification assumption could be enactment of

policies like the Renewable Portfolio Standard (RPS) that are aimed to promote renew-

able development. This could lead to biased estimates if the timing of policy changes

in the RPS is correlated with CREZ expansion. Texas achieved its RPS goal of 10,000

MW of renewable capacity by 2025 in 2009 and the legislature did not make any further

updates to this goal (ERCOT 2009), which effectively rules out this concern as well.

I implement Callaway and Sant’Anna (2021)’s (CS) group-time average treatment

effects on the treated estimator as the estimator of choice. CS estimator corrects for

the bias due to negative weights in the Two Way Fixed Effects (TWFE) estimator in

event study frameworks with treatment heterogeneity (Goodman-Bacon 2021; Sun and

Abraham 2021), while allowing for parallel pre-trends conditional on a set of covariates

(Callaway and Sant’Anna 2021).

Figure 4 shows the CS and TWFE estimators (for reference) for the event study spec-

ification in Equation 14. Conditional on Xit, parallel trends assumption holds for all
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Figure 4: Effect of CREZ Announcement on Wind Investment
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Notes: Figures 4a and 4b show the coefficient estimates of the event study in Equation 14 with Total Wind
Capacity and Average Wind Capacity in a county as dependent variables respectively. Both specifications
include cubic polynomial of wind speed, capacity factor, average farm size, average farm value, terrain
elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator and TWFE
is the Two Way Fixed Effects estimator. Sample is a balanced panel of 253 counties in Texas from 2000 to
2020 (N = 5,313). 95 percent confidence intervals are constructed using standard errors clustered at the
county level.

pre-treatment periods except for the year 2000.11 Figure 4a shows that counties with

CREZ substations saw higher levels of wind investments post announcement in 2008,

with an aggregate ATT of 91 MW (standard error of 34.4 MW). This effect is statistically

significant at the 5 percent level for all the years beyond 2014. However, from Figure 4b,

I do not find evidence for the hypothesis that CREZ counties saw larger wind projects.

One concern with the sample used in Figure 4 is the lack of a common support over

the set of conditioning covariates. The balance between treated and control units is

crucial for the problem of causal inference (Heckman, Ichimura, and Todd 1997; Khan

and Tamer 2010; Roth et al. 2023). I use a matching strategy to address the issue of

11. The p-value for the pre-test for conditional parallel trends from the CS estimator is 0.124 when
dependent variable is total capacity and 0.139 when dependent variable is average project capacity. Thus,
for both the cases I fail to reject the null hypothesis of conditional parallel trends assumption in pre-
treatment periods.
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common support and obtain a comparable set of treated and control units, followed by

estimating the event study specification in Equation 14 on the matched sample.

I implement Coarsened Exact Matching (Iacus, King, and Porro 2012) to address

the issue of common support and obtain a set of counties comparable on observable

dimensions that include both continuous and discrete variables. I use a wide variety

of pre-treatment variables to account for factors that were correlated with CRE siting as

well as investment in wind energy. These variables include wind resource quality (this

includes wind speed, capacity factor, and site specific turbine wind class), average farm

size and average farm value, terrain elevation and ruggedness, average population, and

ERCOT zones.12

Next, I estimate the event study specification in Equation 14 using the sample of

counties obtained from matching. Figure 5 shows the coefficient estimates and the as-

sociated 95 percent confidence interval for both CS and TWFE estimators, with total

project capacity and average project capacity as dependent variables. For both the spec-

ifications coefficient estimates using the matched sample are similar to the estimates in

Figure 4. Furthermore, the assumption of parallel trends holds for all the pre-treatment

periods across both the estimators for specifications with total project capacity and aver-

age project capacity.

Counties with CREZ infrastructure see an increase in total wind investment post

announcement in all the years following announcement in 2008. Similar to Figure 4a, the

CS estimator shows this effect is statistically significant at the 5 percent level for the years

after 2014. This suggests a lag between the transmission expansion announcement and

the materialization of wind investments. Notably, the CREZ transmission expansion was

completed by the end of 2013 as expected. The lagged effect indicates that developers

12. Table D2 in Appendix shows the balance table of control and treated counties before and after match-
ing. Control counties obtained from matching look very similar to the treated counties. The matching step
provides a better counterfactual group for the CREZ locations - counties that look identical on a wide
variety of dimensions that affected selection of CREZ counties (RS&H 2010).
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Figure 5: Effect of CREZ Announcement on Wind Investment
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Notes: Figures 5a and 5b show the coefficient estimates of the event study in Equation 14 with Total Wind
Capacity and Average Wind Capacity in a county as dependent variables respectively. Both specifications
include cubic polynomial of wind speed, capacity factor, average farm size, average farm value, terrain
elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator and TWFE
is the Two Way Fixed Effects estimator. Sample is a balanced panel of 31 treated counties and 68 control
counties obtained from Coarsened Exact Matching, from 2000 to 2020 (N = 2,079). 95 percent confidence
intervals are constructed using standard errors clustered at the county level.

incorporate potential uncertainties in transmission expansion timelines, as well as the

time required for wind project development and possible delays.

The aggregate Average Treatment on the Treated (ATT) estimate using the preferred

CS estimator is about 100 MW per year with a standard error of 42 MW. The higher

annual wind investment in CREZ counties is about 147 percent at the mean, or about 1.08

standard deviations higher than the wind capacity in control counties. Similarly, there

is also a slight increase in average project size in a county post CREZ announcement,

however, this effect is not precisely estimated.

To contextualize these estimates, I compute the value of carbon emissions avoided

due to wind investment as a result CREZ expansion. I use an emissions rate of 0.601

tons of CO2 avoided for each MWh of on-shore wind in Texas (EPA 2021). Assuming the

capacity factor of wind in Texas to be 34.57 percent, wind capacity added due to CREZ
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avoided roughly 7.1 million tonnes of CO2 emissions from the power sector in Texas

annually. Using a social cost of carbon of $185/ton-CO2 (Rennert et al. 2022) the value

of total reduction in carbon emissions is about $1.31 billion per year.

The value of damages avoided is larger if I include local pollutants, namely, SO2,

NOx, and PM2.5. Accurately calculating the value of these damages requires computing

the amount of local pollutants offset by additional wind across location and time. As

an approximation, I use the avoided emissions rate for SO2, NOx, and PM2.5 (EPA 2021)

and weighted marginal damage valuations for these pollutants from the most recent

Integrated Assessment Model, AP4T (Dennin et al. 2024). I find that the wind capacity

led to an annual reduction of approximately $288 million worth of SO2, $75 million

worth of NOx, and $34 million worth of PM2.5. Thus, including local pollutants, the

total value of reduction in emissions is about $1.71 billion per year.13

Wind investment in these locations also generates private benefits in terms of higher

annual payments to landowners. From the discrete choice model of project location

choice, I estimate that the Willingness To Pay (WTP) to locate in CREZ counties is about

$2,808 per MW higher than other locations. Assuming that this WTP translates directly

to higher lease payments, the aggregate treatment effect implies higher annual payments

of approximately $11 million per year to landowners. This extra payment is about 5

percent of total lease payments by wind projects to landowners in Texas in 2020 (AWEA

2019).

13. I use the avoided emissions rates associated with on-shore wind in 2020 in Texas. These are 0.63 lb
per MWh for SO2, 0.46 lb per MWh for NOx, and 0.06 lb per MWh for PM2.5 (EPA 2021). The AP4T
like its predecessors, AP4 and AP3, is an Integrated Assessment Models which is connects emissions to
monetized damages in the US for the five criteria pollutants (Dennin et al. 2024). The marginal damage
valuations associated with Electricity Generation Unit points sources are $77.4 thousand per ton for SO2,
$27.8 thousand per ton for NOx, and $96.5 thousand per ton for PM2.5.
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6.1 Threats to Identification and Robustness Checks

6.1.1 Selection on unobservables - lobbying for or against CREZ:

The key threat to identification is the selection of counties on unobservable character-

istics. This would violate the parallel trends assumption and the estimates would lose

their causal interpretation. While the assumption of parallel trends seems to hold from

Figure 5, I provide further institutional evidence and robustness checks to support its

validity in this context.

One of the unobservable factors is whether certain counties lobbied for or against

siting of the CREZ lines. While opposition is likely not a major concern in West Texas

due to superior wind resources, low land value, and minimal community opposition, it

is certainly a concern for East and South Texas, where some of the lines were closer to

urban areas (Andrade and Baldick 2016). In contrast, certain counties in the Panhandle

region expressed interest to the Public Utilities Commission of Texas (PUCT) for CREZ

investment. This was in part due to an already declining population and economic losses

in these counties in the years preceding CREZ expansion (Cohn and Jankovska 2020).

I construct a set of ‘opposing’ and ‘enthusiastic’ counties by reviewing individual

cases filed by counties to PUCT.14 These filings led to hearings and negotiations between

county officials and PUCT regarding CREZ locations. I run the event study specification

in Equation 14 for both total wind capacity and average project size on the matched

sample obtained after excluding the three sets of counties (opposing, enthusiastic, and

opposing and enthusiastic) separately from the original sample.

The event study results for the matched samples excluding opposing counties (Fig-

ure B1), favorable counties (Figure B2), and both (Figure B3) are similar to the baseline

estimates in Figure 5 for both the specifications. The aggregate treatment effect using

the preferred CS estimator for total wind capacity is 108 MW (standard error of 43 MW)

14. The ‘opposing’ counties are: Kendall, Gillespie, Newton, Kimble, Kerr, Mason, and Schleicher. The
‘enthusiastic’ counties are: Dallam, Sherman, Oldham, Swisher, Lipscomb, Parmer, Lamar, Hall, and Deaf
Smith.
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when excluding opposing counties, 96 MW (standard error of 46 MW) when excluding

favoring counties, and 105 MW (standard error of 44 MW) when excluding either types.

6.1.2 SUTVA violations due investment spillover to neighboring control counties:

Figure E4 shows that several control counties selected by matching are adjacent to the

treated counties. If these control counties saw higher or lower levels of wind investment

as a consequence of their adjacency, it could potentially lead to violation of the Stable

Unit Treatment Value Assumption (SUTVA). 15 To that end, I estimate the event study

specification in Equation 14 on the matched sample excluding adjacent control counties.

Thus, this specification compares wind investment between treated counties and non-

adjacent control counties. A substantial deviation in the estimates from this exercise to

the one in Figure 5 would suggest that the latter results are driven, by investments in

adjacent control counties.

Figure B4 in Appendix shows the coefficient estimates for the post treatment period

are slightly higher but qualitatively similar to the estimates in Figure 5. This suggests

that the baseline results are not driven by deferentially higher investments in counties

adjacent to CREZ than investments in other (non-adjacent) counties. 16 Further, because

the share of wind added due to CREZ expansion is relatively smaller than the energy

mix and overall wind capacity in Texas, any competitive effects on control counties are

likely to be small.

15. A control unit located adjacent to a treated county could be more competitive in receiving higher
wind investment than non-adjacent control county. However, such control counties could also see lower
investments if developers instead shifted future investments from non-CREZ counties to CREZ counties.
Therefore, grid expansion would have simply lead to a realignment of investments instead of overall
greater investments. Both these cases would be instances of SUTVA violations and the assumption of
parallel trends will no longer hold.

16. As an additional check, I estimate an event study specification excluding treated counties and as-
sume adjacent control counties as the treated group and non-adjacent counties as the controls. This setup
compares investment between adjacent and non-adjacent CREZ counties. While the point estimates are
positive, this effect is small and statistically insignificant for all post-treatment periods for both the depen-
dent variables.
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6.1.3 Anticipation of CREZ announcement:

A source of bias in measuring the causal impact could be the anticipation amongst wind

developers to the CREZ announcement in 2008. This would be reflected as a spike

in investment in wind projects within CREZ counties in the years leading up to the

transmission expansion announcement. While I do not see such a pattern in Figure 5, I

examine the possibility of an anticipation effect in two ways.

First, I estimate the event study specification in Equation 14 while allowing for 2 and

4 years of anticipation. This involves estimating the event-study estimates by shifting

the pre-treatment period to allow for the anticipation behavior δ years before the treat-

ment (where δ takes the value 2 and 4). Figure C1 in Appendix C.1 shows that the

coefficient estimates allowing for anticipation behavior are qualitatively similar to the

baseline estimates in Figure 5.

Second, I use data on generator interconnection requests in Texas to check for changes

in interconnection requests prior to CREZ announcement in 2008. Appendix C.2 pro-

vides further details of this data on generator interconnection and harmonization with

the county-level wind dataset. The intuition is similar as before. An anticipation effect

would be marked by an increase in interconnection requests in CREZ counties in the

pre-treatment period. However, results from the event study analysis in Figure C2 on

matched sample do not show any evidence of such an anticipation effect.

6.1.4 Placebo test using cancelled CREZ counties as the treatment group:

I conduct a placebo test using counties that were initially announced to site grid infras-

tructure, but the siting decision was later canceled prior to the development stage.17 I

estimate the event study specification using these counties as the placebo or fake treat-

ment group instead of the original treatment group. This analysis acts as a placebo test

because in the long-run, both the placebo treatment group and the control group should

17. These counties are: Gillespie, Lampasas, Mills, Brown, Eastland, Briscoe, Taylor.
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exhibit similar levels of wind investment. Coefficient estimates in Figure B5 in Appendix

confirm this hypothesis: the difference in wind investment between the placebo treat-

ment group and the control counties is statistically insignificant.18

6.1.5 Impact of CREZ on output and input prices for wind power:

Impact on output prices (i.e. price of power from wind projects) or input prices (i.e.

price of turbines and equipment) as a result of CREZ expansion could affect the com-

petitiveness of control counties relative to treated counties. If projects in CREZ counties

received higher prices for their power or faced lower prices for equipment, then control

counties would be less competitive in receiving wind investment.

Recall, that Texas already achieved its Renewable Portfolio Standard (RPS) of 10,000

MW of new renewable generation by 2025 in 2009, making the RPS non-binding for the

remaining periods of the sample (ERCOT 2009). Therefore, any output price spillovers

due to CREZ are likely to be small, if any. Moreover, because the turbines for wind

projects are purchased on a global market, grid expansion in Texas is unlikely to impact

prices of wind turbines differentially across counties, ruling out this concern.

6.1.6 Sensitivity analysis with unconditional parallel trends:

A key assumption for the identification of ATTs in Equation 14 is that of parallel trends

conditional on the set of covariates which includes variables measuring wind resource

quality and land value. I relax this assumption and re-estimate the event study specifi-

cation for the samples with and without matching as test for whether parallel trends still

hold for the pre-treatment periods. Figure B6a in the Appendix shows that the parallel

trends is violated for several pre-treatment periods for the specification estimated on full

sample with Total Project Capacity as the dependent variable. This is mitigated in Fig-

18. A caveat to these results is a lack of variation in the number of placebo treatment counties. From the
6 counties that were cancelled, the matching algorithm only selects 4 of them and 44 control counties.
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ure B6c which uses the matched sample for the event study and the resulting treatment

effect estimates are very similar to Figure 5.

7 Localized Wind Investment and Rising Curtailments

Electricity market operators typically curtail renewable resources during periods of con-

gestion to maintain grid stability. Wind curtailment refers to the reduction in electricity

generated from a wind generator below the level it could have produced given available

resources. For example, if a wind generator can produce 100 MW of electricity in a given

period but is scheduled to produce only 80 MW, the wind curtailment is 20 MW. Curtail-

ment is typically involuntary on the part of the generator. In Texas, ERCOT determines

the extent of curtailments based on factors such as available transmission capacity, total

demand, and total supply.

Electricity market operators typically curtail renewable resources during periods of

congestion to maintain grid stability.19 In Texas, the lack of adequate transmission ca-

pacity between West and the East has been the primary source of wind curtailment (Bird,

Cochran, and Wang 2014). Figure 6 shows that CREZ expansion led to a significant de-

cline in total wind curtailments post CREZ expansion, but have been steady rising since

2017.20

Analysis in Section 6 shows that locations with CREZ expansion saw higher levels of

wind investments in the long-run. Although wind generation in Texas has been steadily

increasing over the past couple of decades, there has not been any other significant

19. Wind curtailment is the reduction in electricity generated from a wind generator below the level it
could have produced given available resources (Bird, Cochran, and Wang 2014). For example, suppose a
wind generator can produce 100 MW of electricity in a given period but is finally scheduled to produce
80 MW, the wind curtailment is 20 MW. Curtailment is typically involuntary on the part of the generator.
ERCOT determines the extent of curtailments based on a combination of factors like available transmission
capacity, total demand and total supply.

20. Figure E5 in Appendix breaks down the average wind curtailment by hour for each year in 2011

to 2019, showing that curtailments in 2019 were higher than pre-grid expansion levels in 2011 and 2012,
especially during Off-Peak hours.
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Figure 6: Wind Curtailment in Texas
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Notes: This figure shows total monthly curtailment from 2011 to 2019. Shaded area is the period of CREZ
transmission expansion.

transmission expansion project. A potential consequence of this localized investment

and limited transmission capacity is rise in curtailment of wind farms in the West. Using

data on hourly wind curtailments at the ERCOT Zone level (West, North, South, and

Houston) from August 2011 to December 2019, I explore this phenomenon by estimating

the following specification:

yit =
2019

∑
k=2011

αk · westi +
2019

∑
k=2011

βk · otheri + γmd + δdh + ϵit (15)

where yit is total wind curtailment in zone i at hour t, westi is an indicator if the ob-

servation is in the West, and otheri is an indicator if the observation is in one of the other

zones (North, South, Houston). The parameters of interest αk and βk measure the mean

hourly curtailment in west and other zones for the years 2011 to 2019. Random errors

denoted by ϵit are clustered by the day-of-the-sample to account for serial correlation at

the daily level.

I include month-of-year-by-day-of-month (γmd) and day-of-month-by-hour-of-day

(δdh) fixed effects to flexibly control for seasonal variation in wind patterns and wind

generation at a high level of temporal granularity. In other words, αk and βk are identi-

fied from deviations from hourly averages of curtailments over each day and month of
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the sample for each years in 2011 to 2019. To explore heterogeneity by time of the day, I

estimate the specification in Equation 15 separately for Off-Peak and On-Peak hours.21

Figure 7: Annual Curtailment in West v.s. Other Regions
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Notes: This figure shows the coefficient estimates of αk and βk from Equation 15, estimated separately
for the Off-Peak and On-Peak hours. West is an indicator for observations in West Zone, and Other is
an indicator for observations in North, South, and Houston Zones. Sample is a balanced panel of hourly
total wind curtailment at the zonal level from 2011 to 2019. 95 percent confidence intervals are constructed
using standard errors clustered at the day of the sample.

Figure 7 shows the coefficient estimates from Equation 15 for Off-Peak and On-Peak

hours. With the CREZ expansion underway in 2013, curtailments in the West saw a dra-

matic drop post 2012 across both Off-Peak and On-Peak hours. Average curtailments in

the West remained below 50 MW during On-Peak hours through 2017 and about 50 MW

during 2018 and 2019. Furthermore, curtailments in other zones remained almost zero

throughout 2011 to 2019 for both Off-Peak and On-Peak hours. This result is expected

since congestion and subsequent wind curtailment, particularly during Off-Peak hours

is mainly an issue for wind generation in the West. Thus, this result also serves as an

empirical check.

More interestingly, there has been an increase in hourly wind curtailments during

Off-Peak hours in the West and Panhandle post-2016. Coefficient estimates show that

21. Peak period in Texas is defined as the hours ending in 7:00 a.m. to 10:00 p.m. CPT.
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hourly curtailment in 2019 was about 120 MW, approximately 20 MW higher than the

pre-transmission expansion estimates of 2011 and 2012. The rise in curtailments indicates

a combination of higher wind generation and limited transmission capacity connecting

the West to the demand centers in the East.

These curtailments translate to excess emissions that could be avoided with adequate

transmission capacity. From Figure 7, the average hourly curtailment of 120 MW during

Off-Peak hours in 2019 in the West implies $85 million in excess emissions. Similarly, an

average curtailment of 51 MW during On-Peak hours in 2019 translates to $71 million

in excess emissions. Taken together, these estimates imply $120 million in excess carbon

emissions and $36 million in excess local emissions (SO2, NOx, and PM2.5) annually due

to wind curtailment in the West.

8 Conclusion

This paper shows that large scale grid expansion projects can lead to long-run invest-

ment in renewable energy. These investments create significant public and private ben-

efits. Using the context of CREZ expansion in Texas, I find that the benefits from lower

emissions and higher lease payments to landowners is about $1.72 billion per year. These

benefits are in conjunction with several short-run benefits like lower market power and

emissions the fossil fuel sector (Fell, Kaffine, and Novan 2021; Doshi 2024). These bene-

fits are in the order of hundreds of millions of dollars annually. Estimating these invest-

ment spillovers and accurately quantifying the associated benefits is essential to justify

large capital costs associated with transmission expansions, a hurdle that these projects

often face with the regulators.22

22. An example is the case of Grain Belt Express, a $7 billon, 780 mile transmission project proposed in
2014 aimed at connecting wind generation in Kansas to customers in Indiana, passing through Missouri
and Illinois. While the regulators in Kansas, Illinois, and Indiana signed-off on the project, regulators in
Missouri denied approval citing lack of benefits to justify the costs. Though the developers and regula-
tors in Missouri eventually came to an agreement, the delay cost nearly 10 years of project development
(Solomon 2023).
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Localized renewable investment in response to transmission expansion can lead to

higher curtailments if transmission capacity remains inadequate. In Texas, wind curtail-

ments in recent years are equivalent to $156 million worth of excess emissions per year.

These curtailments can also diminish the value of wind investment, reflected by the de-

clining likelihood of siting projects in these locations over time. These results highlight

the value of taking a long-term planning approach to transmission policy (FERC Order

No. 1920).23

23. Recent research has suggested several reforms to mitigate these issues. This includes building or
expanding high capacity transmission lines in existing Right-Of-Way and other public infrastructure cor-
ridors (Department of Energy 2024). Other reforms include increasing capacity of existing transmission
lines by large scale reconductoring (Chojkiewicz et al. 2024), converting existing High Voltage Alternating
Current (HVAC) into high-voltage direct current (HVDC) lines or hybrid AC/DC lines (Reed et al. 2019)
within existing Right-Of-Way.
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Appendix

A Heterogeneity Analysis for Wind Project Location Choice

A.1 Results with nameplate capacity

Table A1: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez × nameplate 0.005*** 0.006*** 0.006*** 0.006***

(0.001) (0.001) (0.001) (0.001)

median farm size × nameplate -1.25×10
6 -1.07×10

6

(1.23×10
6) (1.23×10

6)

average farm size × nameplate 4.13×10
6*** 3.68×10

6***

(1.28×10
6) (1.31×10

6)

average farm value × nameplate -9.85×10
7 -1.96×10

6

(4.07×10
6) (4.31×10

6)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 168 168 168 168

Observations 1,030 1,030 1,030 1,030

Log Likelihood -287.5 -272 -271.2 -265.1

Odds Ratio of crez 1.005 1.006 1.006 1.006

Notes: This table shows the coefficient estimates of conditional logit model of wind project
location choice. Sample is all wind projects in Texas, larger than 1 MW in size that began operation
in 2001 to 2020. crez is an indicator for whether the chosen county has a CREZ substation.
nameplate is the project nameplate capacity (MW). Wind Resource Controls include cubic spline
of wind speed, capacity factor, and site-specific turbine class rating. Site-specific controls include
average land prices, average and standard deviation of terrain elevation, and an indicator for
presence of wind ordinance. Region Fixed Effect is a region specific indicator for West, Panhandle,
East, and South regions. By design, each project faces a choice set of 5 distinct counties. Total
Alternatives is the total number of distinct counties across all choice sets. Robust standard errors
clustered at the project level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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Figure A1: Average Marginal Effect of CREZ by Project Nameplate Capacity
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Note: This figure shows the average marginal effect (percentage point pp) of choosing a CREZ county
by project nameplate capacity (MW), obtained from estimating conditional logit model of location choice.
Sample is all wind projects in Texas, larger than 1 MW in size that began operation in 2001 to 2020.
Specification 1 includes Wind Resource Controls, Specification 2 includes Wind Resource Controls and
Region Fixed Effects, Specification 3 includes Wind Resource Controls and Site-specific Controls, and
Specification 4 includes Wind Resource Controls, Region Fixed Effects, and Site-specific Controls. All
specifications include interaction of crez and project nameplate capacity. Specifications 3 and 4 include
interactions of project capacity with variables measuring farm value and farm size.
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A.2 Results with project operation year

Table A2: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez × trend 0.321*** 0.348*** 0.364*** 0.392***

(0.061) (0.062) (0.066) (0.069)

crez × trend2 -0.019*** -0.020*** -0.021*** -0.022***

(0.004) (0.004) (0.004) (0.004)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 168 168 168 168

Observations 1,030 1,030 1,030 1,030

Log Likelihood -284.5 -269.6 -264.4 -257.7

Notes: This table shows the coefficient estimates of conditional logit model of wind
project location choice. Sample is all wind projects in Texas, larger than 1 MW in
size that began operation in 2001 to 2020. crez is an indicator for whether the chosen
county has a CREZ substation. trend is a linear time trend for the year when project
began operation. Wind Resource Controls include cubic spline of wind speed, capac-
ity factor, and site-specific turbine class rating. Site-specific controls include average
land prices, median farm acreage, average farm size (acre), median farm size (acre),
average farm value ($ per acre), average and standard deviation of terrain elevation,
and an indicator for presence of wind ordinance. Region Fixed Effect is a region spe-
cific indicator for West, Panhandle, East, and South regions. By design, each project
faces a choice set of 5 distinct counties. Total Alternatives is the total number of dis-
tinct counties across all choice sets. Robust standard errors clustered at the project
level reported in parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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Figure A2: Average Marginal Effect of CREZ by Project Operation Year
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Note: This figure shows the average marginal effect (percentage point pp) of choosing a CREZ county
over time (i.e. by project operation year), obtained from estimating conditional logit model of location
choice. Sample is all wind projects in Texas, larger than 1 MW in size that began operation in 2001 to
2020. Specification 1 includes Wind Resource Controls, Specification 2 includes Wind Resource Controls
and Region Fixed Effects, Specification 3 includes Wind Resource Controls and Site-specific Controls, and
Specification 4 includes Wind Resource Controls, Region Fixed Effects, and Site-specific Controls. All
specifications include interaction of crez with a quadratic polynomial of time trend.
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A.3 Results for project phase type

Table A3: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez 0.744*** 0.861*** 0.923*** 0.906***

(0.255) (0.263) (0.297) (0.297)

crez × multi-phase project 0.256 0.304 0.295 0.378

(0.342) (0.343) (0.377) (0.383)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 168 168 168 168

Observations 1,030 1,030 1,030 1,030

Log Likelihood -288 -272.2 -267.7 -261.6

Notes: This table shows the coefficient estimates of conditional logit model of
wind project location choice. Sample is all wind projects in Texas, larger than 1

MW in size that began operation in 2001 to 2020. crez is an indicator for whether
the chosen county has a CREZ substation. multi-phase project is an indicator for
whether the project is part of a multi-phase expansion. Wind Resource Controls
include cubic spline of wind speed, capacity factor, and site-specific turbine class
rating. Site-specific controls include average land prices, median farm acreage,
average farm size (acre), median farm size (acre), average farm value ($ per acre),
average and standard deviation of terrain elevation, and an indicator for presence
of wind ordinance. Region Fixed Effect is a region specific indicator for West,
Panhandle, East, and South regions. By design, each project faces a choice set of 5

distinct counties. Total Alternatives is the total number of distinct counties across
all choice sets. Robust standard errors clustered at the project level reported in
parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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Figure A3: Average Marginal Effect of CREZ by Project Phase
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Note: This figure shows the average marginal effect (percentage point pp) of choosing a CREZ county
for single phase and multi-phase projects, obtained from conditional logit model estimates in Table A3.
Sample is all wind projects in Texas, larger than 1 MW in size that began operation in 2001 to 2020.
Specification 1 includes Wind Resource Controls, Specification 2 includes Wind Resource Controls and
Region Fixed Effects, Specification 3 includes Wind Resource Controls and Site-specific Controls, and
Specification 4 includes Wind Resource Controls, Region Fixed Effects, and Site-specific Controls. All
specifications include interaction of crez with a quadratic polynomial of time trend.
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A.4 Results by turbine rotor diameter

Table A4: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez × rotor diameter 0.064*** 0.067*** 0.067*** 0.072***

(0.012) (0.012) (0.013) (0.013)

crez × rotor diameter2 -0.0006*** -0.0006*** -0.0006*** -0.0006***

(0.0001) (0.0001) (0.0001) (0.0001)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 168 168 168 168

Observations 1,030 1,030 1,030 1,030

Log Likelihood -278.5 -263.5 -259.3 -252.7

Notes: This table shows the coefficient estimates of conditional logit model of wind project
location choice. Sample is all wind projects in Texas, larger than 1 MW in size that began
operation in 2001 to 2020. crez is an indicator for whether the chosen county has a CREZ
substation. rotor diameter is the rotor diameter in meters of the predominant wind turbine
used in the wind project. Wind Resource Controls include cubic spline of wind speed,
capacity factor, and site-specific turbine class rating. Site-specific controls include average
land prices, median farm acreage, average farm size (acre), median farm size (acre), aver-
age farm value ($ per acre), average and standard deviation of terrain elevation, and an
indicator for presence of wind ordinance. Region Fixed Effect is a region specific indicator
for West, Panhandle, East, and South regions. By design, each project faces a choice set
of 5 distinct counties. Total Alternatives is the total number of distinct counties across all
choice sets. Robust standard errors clustered at the project level reported in parenthesis.
Significance: ***p<0.01;**p<0.05;*p< 0.1
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Figure A4: Average Marginal Effect of CREZ by Turbine Rotor Diameter
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Note: This figure shows the average marginal effect (percentage point pp) of choosing a CREZ county by
rotor diameter of the chosen wind turbine, obtained from estimating conditional logit model of location
choice. Sample is all wind projects in Texas, larger than 1 MW in size that began operation in 2001 to
2020. Specification 1 includes Wind Resource Controls, Specification 2 includes Wind Resource Controls
and Region Fixed Effects, Specification 3 includes Wind Resource Controls and Site-specific Controls, and
Specification 4 includes Wind Resource Controls, Region Fixed Effects, and Site-specific Controls. All
specifications include interaction of crez with a quadratic polynomial of time trend.
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A.5 Results with K = 10 in Nearest Neighbor Matching for Choice Set

Table A5: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez 0.724*** 0.849*** 0.876*** 0.902***

(0.169) (0.184) (0.196) (0.210)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 206 206 206 206

Total Alternatives 202 202 202 202

Observations 2,060 2,060 2,060 2,060

Log Likelihood -426 -402.6 -395.2 -384.9

Odds Ratio of crez 2.063 2.338 2.401 2.465

Average Marginal Effect 0.088 0.106 0.113 0.117

Notes: This table shows the coefficient estimates of conditional logit model of
wind project location choice. Sample is all wind projects in Texas, larger than 1

MW in size that began operation in 2001 to 2020. crez is an indicator for whether
the chosen county has a CREZ substation. Wind Resource Controls include cu-
bic spline of wind speed, capacity factor, and site-specific turbine class rating.
Site-specific controls include average land prices, median farm acreage, average
farm size (acre), median farm size (acre), average farm value ($ per acre), aver-
age and standard deviation of terrain elevation, and an indicator for presence of
wind ordinance. Region Fixed Effect is a region specific indicator for West, Pan-
handle, East, and South regions. By design, each project faces a choice set of 10

distinct counties. Total Alternatives is the total number of distinct counties across
all choice sets. Robust standard errors clustered at the project level reported in
parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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A.6 Results with choice set at the site level

Table A6: Conditional Logit Model of Wind Project Location Choice

(1) (2) (3) (4)

crez 0.626*** 0.758*** 1.037*** 0.982***

(0.239) (0.239) (0.269) (0.267)

Wind Resource Controls ✓ ✓ ✓ ✓

Region Fixed Effect ✓ ✓

Site-specific Controls ✓ ✓

Total Projects 136 136 136 136

Total Alternatives 177 177 177 177

Observations 614 614 614 614

Log Likelihood -171.8 -157 -155.9 -150.7

Odds Ratio of crez 1.871 2.133 2.819 2.669

Average Marginal Effect 0.088 0.106 0.113 0.117

Notes: This table shows the coefficient estimates of conditional logit model of
wind project location choice. Sample is all wind projects in Texas, larger than 1

MW in size that began operation in 2001 to 2020. crez is an indicator for whether
the chosen county has a CREZ substation. Wind Resource Controls include cubic
spline of wind speed, capacity factor, and site-specific turbine class rating. Site-
specific controls include average land prices, median farm acreage, average farm
size (acre), median farm size (acre), average farm value ($ per acre), average and
standard deviation of terrain elevation, and an indicator for presence of wind
ordinance. Region Fixed Effect is a region specific indicator for West, Panhandle,
East, and South regions. Total Alternatives is the total number of distinct counties
across all choice sets. Choice set is constructed by running K-Nearest Neighbor
Algorithm at the site level with K = 100, followed by aggregating choices at the
county level. The average size of a choice set is about 5.5, whereas the minimum
and maximum number of choices are 2 and 22 respectively. 70 projects only
have one county in the choice set and are thus excluded from the conditional
logit estimation. Robust standard errors clustered at the project level reported in
parenthesis. Significance: ***p<0.01;**p<0.05;*p< 0.1
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B Robustness Checks for Event Study Analysis

B.1 Matching on Unobservables - Results excluding Opposing Coun-

ties

Figure B1: Effect of CREZ Announcement on Wind Investment
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Notes: Figures B1a and B1b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both speci-
fications include cubic polynomial of wind speed, capacity factor, average farm size, average farm value,
terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator
and TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 29 treated counties
and 65 control counties obtained using Coarsened Exact Matching, from 2000 to 2020 (N = 1,974) after
excluding counties that formally opposed CREZ siting in legal filings to the Public Utilities Commission
of Texas: Kendall, Gillespie, Newton, Kimble, Kerr, Mason, and Schleicher. 95 percent confidence intervals
are constructed using standard errors clustered at the county level.
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B.2 Matching on Unobservables - Results excluding Favorable Coun-

ties

Figure B2: Effect of CREZ Announcement on Wind Investment
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Notes: Figures B2a and B2b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both speci-
fications include cubic polynomial of wind speed, capacity factor, average farm size, average farm value,
terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator
and TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 29 treated counties and
61 control counties obtained using Coarsened Exact Matching, from 2000 to 2020 (N = 1,890) after ex-
cluding counties that formally favored siting CREZ substations/lines in legal filings to the Public Utilities
Commission of Texas: Dallam, Sherman, Oldham, Swisher, Lipscomb, Parmer, Lamar, Hall, Deaf Smith.
95 percent confidence intervals are constructed using standard errors clustered at the county level.
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B.3 Matching on Unobservables - Results excluding Opposing and Fa-

vorable Counties

Figure B3: Effect of CREZ Announcement on Wind Investment
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Notes: Figures B3a and B3b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both speci-
fications include cubic polynomial of wind speed, capacity factor, average farm size, average farm value,
terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator and
TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 27 treated counties and 58

control counties obtained using Coarsened Exact Matching, from 2000 to 2020 (N = 1,785) after excluding
counties that either opposed (Kendall, Gillespie, Newton, Kimble, Kerr, Mason, and Schleicher) or favored
(Dallam, Sherman, Oldham, Swisher, Lipscomb, Parmer, Lamar, Hall, Deaf Smith) siting CREZ substa-
tions/lines in legal filings to the Public Utilities Commission of Texas. 95 percent confidence intervals are
constructed using standard errors clustered at the county level.
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B.4 Results for investment spillover to adjacent counties

Figure B4: Effect of CREZ Announcement on Wind Investment
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Notes: Figures B4a and B4b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both speci-
fications include cubic polynomial of wind speed, capacity factor, average farm size, average farm value,
terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator
and TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 31 CREZ counties as
the treatment group and 22 counties non-adjacent to CREZ locations as control counties obtained using
Coarsened Exact Matching, from 2000 to 2020 (N = 1,113). 95 percent confidence intervals are constructed
using standard errors clustered at the county level.
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B.5 Results of Placebo test using cancelled CREZ counties

Figure B5: Effect of CREZ Announcement on Wind Investment: Excluding Opposing
and Favorable Counties
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Notes: Figures B5a and B5b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both speci-
fications include cubic polynomial of wind speed, capacity factor, average farm size, average farm value,
terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021) estimator
and TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 4 counties as the placebo
treatment group and 44 counties as control counties obtained using Coarsened Exact Matching, from 2000

to 2020 (N = 1,008). The placebo treatment counties are the counties that were selected to site CREZ lines
but the siting was canceled before the development- Gillespie, Lampasas, Mills, Brown, Eastland, Briscoe,
Taylor. 95 percent confidence intervals are constructed using standard errors clustered at the county level.
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B.6 Testing for Unconditional Parallel Trends
Figure B6: Effect of CREZ Announcement on Wind Investment
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Notes: Figures B6a and B6b show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both specifi-
cations allow for unconditional parallel trends. CS is Callaway and Sant’Anna (2021) estimator and TWFE
is the Two Way Fixed Effects estimator. Sample is a balanced panel of 253 counties in Texas from 2000 to
2020 (N = 5,313). 95 percent confidence intervals are constructed using standard errors clustered at the
county level.

−100

0

100

200

300

−8 −6 −4 −2 0 2 4 6 8 10 12
Year from CREZ announcement (2008)

To
ta

l W
in

d 
C

ap
ac

ity
 (

M
W

)

Estimator CS TWFE

(c) Total Project Capacity (MW)

−40

0

40

80

−8 −6 −4 −2 0 2 4 6 8 10 12
Year from CREZ announcement (2008)

A
ve

ra
ge

 W
in

d 
C

ap
ac

ity
 (

M
W

)

Estimator CS TWFE

(d) Average Project Capacity (MW)

Notes: Figures B6c and B6d show the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity and Average Wind Capacity in a county as dependent variables respectively. Both specifi-
cations allow for unconditional parallel trends. CS is Callaway and Sant’Anna (2021) estimator and TWFE
is the Two Way Fixed Effects estimator. Sample is a balanced panel of 31 treated counties and 68 control
counties obtained from Coarsened Exact Matching, from 2000 to 2020 (N = 2,079). 95 percent confidence
intervals are constructed using standard errors clustered at the county level.
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C Anticipation Behavior

In this section, I examine whether there was an anticipation amongst wind developers

to announcement of CREZ transmission expansion in late 2008. Existence of such an

anticipation could lead to biased estimates of the impact on CREZ announcement on

wind investment in Section 6. The direction of the bias is expected to be downwards

since the coefficient estimate would not capture the wind investment in periods before

the announcement.

C.1 Allowing for anticipation behavior in Callaway and Sant’Anna

(2021) estimates

I first test for the anticipation behavior by allowing for anticipation periods in the pre-

ferred Callaway and Sant’Anna (2021) (CS) estimator for the event study specification

in Equation 14. Allowing for δ anticipation periods involves estimating the event study

with the pre-treatment window shifted by δ − 1 periods. I estimate specifications with

anticipation two and four years from CREZ announcement, i.e. 2006 and 2004 respec-

tively. Allowing for earlier anticipation periods comes at the expense of the number of

pre-treatment periods remaining (Callaway and Sant’Anna 2021).

Figure C1 shows the event study estimates allowing for anticipation behavior (δ = 2

and δ = 4) for total wind capacity and average project size as the dependent variable.

While the coefficient estimates for both the dependent variables (Figures C1a and C1b)

are positive for the two anticipation periods (i.e. periods -2 and -1), they are statistically

indistinguishable from zero. Further, the estimates for the post treatment period are

qualitatively similar to the no-anticipation behavior baseline estimates in Figure 5 for

total capacity and average project size. In a similar vein, the coefficient estimates for

post-treatment period when allowing for four periods of anticipation (δ = 4) in Figures

C1c and C1d are also similar to the baseline estimates.
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Figure C1: Effect of CREZ Announcement on Wind Investment - Anticipation Behavior
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Notes: Figures C1a and C1c shows the coefficient estimates of the event study in Equation 14 with Total
Wind Capacity in a county as the dependent variable. Figures C1b and C1d shows the coefficient estimates
of the event study in Equation 14 with Average Wind Capacity in a county as the dependent variable.
Figures C1a and C1b allow for two periods of anticipation behavior whereas Figures C1c and C1d allow
for four periods of anticipation behavior. All of the specifications use Callaway and Sant’Anna (2021)
estimator and include cubic polynomial of wind speed, capacity factor, average farm size, average farm
value, terrain elevation, and terrain ruggedness as covariates. Sample is a balanced panel of 31 treated
counties and 68 control counties obtained using Coarsened Exact Matching, from 2000 to 2020 (N = 2,079).
95 percent confidence intervals are constructed using standard errors clustered at the county level.
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C.2 Testing for anticipation behavior using generator interconnection

data

Next, I use the information on generator interconnection requests as another test for

existence of anticipation behavior. An increase in generator interconnection requests or

interconnection capacity can reflect anticipatory investment towards future transmission

expansion at a location. Recall that signing the interconnection agreements and entering

the queue is one of the first steps in the process of wind project developments and

precedes financing and project construction (AWEA 2019).

I collect interconnection data from EIA Form 860 for the years 2004 to 2012 and com-

bine this with Generator Interconnection Status (GIS) Reports from ERCOT for the years

2013 to 2019 to get the date when a wind project signed the interconnection agreement.

I match these data with the wind project data from EIA Form 860 and American Clean

Power Association (formerly AWEA). The matched dataset comprises of 147 projects that

signed the interconnection agreement between 2004 and 2018. These projects represent

about 87 percent of the existing wind projects in Texas during this period. Therefore, I

restrict the sample to 2004 to 2018 for the analysis below.

I run several event study specifications, similar in spirit to Equation 14 to test whether

CREZ locations saw significantly more interconnection requests than other locations,

pre- and post-CREZ announcement. Specifically, I estimate versions of the following

specification:

yit = αi + τt +
2018

∑
k=2004, ̸=2007

βk · crezi × 1{Kt = k}+ X′
itΠ + ϵit (16)

where yit is the outcome of interest. I use number of interconnection requests in county

i in year t and total capacity of projects that signed an interconnection request in county

i in year t as the dependent variables. 1{Kt = k} is the set of relative year indicators

from 2004 to 2018 with 2007 as the base year, and crezi is a binary variable that specifies
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whether a substation for CREZ lines was announced to site in county i. αi and τt are

county and year fixed effects respectively, and ϵit is the random error term clustered at

the county level.

The parameter of interest, βk captures the average difference in the outcome variable

in treated vs. control counties relative to the announcement year of 2008. I include a

wide variety of control variables summarized in vector Xit which account for factors

that could affect wind project siting and are correlated with CREZ locations. These

variables include cubic polynomial of wind speed, capacity factor, terrain elevation and

ruggedness, and farm value and size to control for land value. County fixed effects

account for unobserved and time-invariant county-specific factors and year fixed effects

account for common time specific shocks.

I implement a matching strategy to address the concern of a lack of common sup-

port in comparing treated and control counties in Equation 16. Similar to the empirical

strategy in Section 6, I use Coarsened Exact Matching to obtain a set of counties that are

identical on a wide array of characteristics that affected selection of CREZ locations and

affect wind project site selection. Table D3 shows the balance table of counties pre- and

post matching strategy. Finally, I implement the Callaway and Sant’Anna (2021) stag-

gered treatment effects estimator for the event study specification in Equation 16 using

the sample obtained from matching.

Figure C2 shows the coefficient estimates for Equation 16 with number of intercon-

nection requests and interconnection request capacity as the dependent variables. I do

not observe any discernible impact of CREZ announcement on generator interconnection

requests, pre- or post-treatment period.
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Figure C2: Effect of CREZ Announcement on Generator Interconnection

−0.50

−0.25

0.00

0.25

−4 −2 0 2 4 6 8 10
Year from CREZ announcement (2008)

N
um

be
r 

of
 In

te
rc

on
ne

ct
io

n 
R

eq
ue

st
s

Estimator CS TWFE

(a) Number of Interconnection Requests

−100

−50

0

50

−4 −2 0 2 4 6 8 10
Year from CREZ announcement (2008)

In
te

rc
on

ne
ct

io
n 

C
ap

ac
ity

 (
M

W
)

Estimator CS TWFE

(b) Total Interconnection Capacity (MW)

Notes: Figure C2a shows the coefficient estimates of the event study in Equation 16 with Number of
Interconnection Requests in a county as the dependent variable. Figure C2b shows the coefficient estimates
of the event study in Equation 16 with Interconnection Capacity in a county as the dependent variable.
Both specifications include cubic polynomial of wind speed, capacity factor, average farm size, average
farm value, terrain elevation, and terrain ruggedness as covariates. CS is Callaway and Sant’Anna (2021)
estimator and TWFE is the Two Way Fixed Effects estimator. Sample is a balanced panel of 34 treated
counties and 75 control counties obtained using Coarsened Exact Matching, from 2004 to 2018 (N = 1,635).
95 percent confidence intervals are constructed using standard errors clustered at the county level.
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D Supplementary Tables

Table D1: Summary Statistics at the Project Level

Mean Std. Dev. Min Max

CREZ (0/1) 0.42 0.49 0 1

Nameplate Capacity (MW) 146.33 89.69 1.30 478.00

Wind Speed (m per s) 8.16 0.53 6.93 9.52

Capacity Factor 0.45 0.04 0.33 0.55

Elevation (m) 673.46 358.30 6.13 1,330.36

Terrain Ruggedness 20.04 9.49 1.51 66.17

Land Price ($ per acre) 1,494.85 1,087.37 104.00 6,478.33

Average Farm Size (acre) 2,931.57 5,392.27 176.60 35,635.20

Median Farm Size (acre) 517.00 490.15 12.00 2,218.80

Average Farm Value ($ per acre) 1,217.24 747.41 137.00 4,180.40

Wind Ordinance (0/1) 0.00 0.00 0 0

Notes: This table shows the summary statistics at the project level of key variables used in
the wind project location choice estimation. Sample is all wind projects in Texas bigger than
1 MW in size that began operation from 2001 to 2020.
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Table D2: Balance Table of Pre- and Post-Matching Sample

Variables
Pre-Matching Post-Matching

Control Mean Treated Mean
Difference

(1) - (2)
p-val Control Mean Treated Mean

Difference

(5) - (6)
p-val

(1) (2) (3) (4) (5) (6) (7) (8)

Wind Speed (m/s) 7.350 7.920 0.570 0.000 7.870 8.000 0.130 0.190

Capacity Factor 0.410 0.450 0.040 0.000 0.440 0.450 0.010 0.070

Average Population (1000s) 75.510 155.540 80.030 0.140 32.590 29.570 -3.020 0.780

Average Farm Size (1000 acres) 1.810 1.660 -0.160 0.830 1.300 1.420 0.120 0.670

Median Farm Size (1000 acres) 0.430 0.370 -0.060 0.770 0.370 0.370 0.000 0.970

Average Farm Value (1000 $ per acre) 1.240 1.070 -0.170 0.200 0.930 0.820 -0.110 0.420

Average Elevation (m) 396.520 585.360 188.850 0.000 642.630 628.070 -14.550 0.850

Terrain Ruggedness 20.010 22.240 2.230 0.480 19.580 22.150 2.580 0.130

ERCOT Zone: Coastal 0.051 0.000 0.051 - 0.000 0.000 0.000 -

ERCOT Zone: Houston 0.028 0.000 0.028 - 0.000 0.000 0.000 -

ERCOT Zone: North 0.215 0.308 -0.093 - 0.263 0.263 0.000 -

ERCOT Zone: Panhandle 0.135 0.179 -0.044 - 0.380 0.217 0.162 -

ERCOT Zone: South 0.257 0.026 0.231 - 0.030 0.030 0.000 -

ERCOT Zone: West 0.206 0.487 -0.282 - 0.328 0.490 -0.162 -

Total Counties 214 39 68 31

Notes: This table shows balance test of key variables at their pre-treatment values used in matching using Coarsened Exact Matching. Pre-treatment sample is constructed from
wind project data from 2000 to 2007. Terrain ruggedness is the standard deviation of elevation in a county. Exact matching is implemented for ERCOT load zones.
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Table D3: Balance Table of Pre- and Post-Matching Sample: Anticipation Analysis

Variables
Pre-Matching Post-Matching

Control Mean Treated Mean
Difference

(2) - (1)
p-val Control Mean Treated Mean

Difference

(6) - (5)
p-val

(1) (2) (3) (4) (5) (6) (7) (8)

Wind Speed (m/s) 7.350 7.920 0.570 0.000 7.880 7.950 0.060 0.480

Capacity Factor 0.410 0.450 0.040 0.000 0.440 0.450 0.000 0.560

Average Population (1000s) 78.280 161.080 82.800 0.140 31.150 48.940 17.790 0.270

Average Farm Size (1000 acre) 1.800 1.590 -0.210 0.780 1.340 1.490 0.160 0.630

Median Farm Size (1000 acre) 0.420 0.360 -0.060 0.770 0.390 0.370 -0.030 0.770

Average Farm Value (1000 $ per acre) 1.430 1.240 -0.200 0.170 1.110 1.090 -0.030 0.850

Average Elevation (m) 396.520 585.360 188.850 0.000 617.370 608.380 -8.990 0.900

Terrain Ruggedness 20.010 22.240 2.230 0.480 20.060 21.960 1.900 0.240

ERCOT Zone: Coastal 0.051 0.000 0.051 - 0.000 0.000 0.000 -

ERCOT Zone: Houston 0.028 0.000 0.028 - 0.000 0.000 0.000 -

ERCOT Zone: North 0.215 0.308 -0.093 - 0.295 0.266 -0.066 -

ERCOT Zone: Panhandle 0.135 0.179 -0.044 - 0.334 0.195 -0.382 -

ERCOT Zone: South 0.257 0.026 0.231 - 0.027 0.027 0.000 -

ERCOT Zone: West 0.206 0.487 -0.282 - 0.343 0.511 0.369 -

Total Counties 214 39 75 34

Notes: This table shows balance test of key variables at their pre-treatment values used in matching using Coarsened Exact Matching for anticipation behavior analysis in ??.
Pre-treatment sample is constructed from wind project data from 2004 to 2007. Terrain ruggedness is the standard deviation of elevation (metres) in a county. Exact matching is
implemented for ERCOT load zones.
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E Supplementary Figures

Figure E1: Wind Project Development Timeline
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Figure E2: Land Market Regions

Source: Real Estate Center at Texas A&M University
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Figure E3: Heat Map of Counties in Project Choice Sets
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Note: This figure shows a frequency map of counties appearing across wind project choice sets from K-
Nearest Neighbor algorithm with K = 10 (i.e. a project can choose from a set of 10 counties). Darker blue
shade indicates that a county appears in the location choice set of multiple projects. Counties not part of
any choice set are shown in grey. CREZ counties are shown in hash pattern.
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Figure E4: Treated and control counties obtained using Coarsened Exact Matching

27.5

30.0

32.5

35.0

−104 −100 −96
Longitude

La
tit

ud
e

Post−Matching Control Post−Matching Treated

Notes: Total number of control counties are 30, total number of treated counties are 13. Unshaded counties
are discarded from the sample used in the regression analysis because they lie outside of the common
support of observable characteristics.
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Figure E5: Average Hourly Wind Curtailment
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