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Abstract

We study the effect of market structure on technology adoption in the U.S. solar
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competition and adoption is explained by differences in financing costs across the two
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1 Introduction

Does competition increase innovation? The relationship is theoretically ambiguous (Schum-
peter, 1934, 1942; Arrow, 1962) and endogenous market structure complicates empirical
analysis. Existing empirical papers have found mixed results (Gilbert, 2006),1 suggesting
the effect of competition on innovation is context dependent. Similar challenges apply to
studying how competition affects technology adoption, a key driver of innovation (Macher,
Miller and Osborne, 2021).

Electricity markets are an interesting context to study how competition affects technology
adoption for two reasons. First, the electricity sector is expected to undergo massive changes
in response to global climate change. These changes will involve adopting new, cleaner ways
of generating electricity. Second, the level of competition in these markets is largely a policy
choice: policymakers make numerous regulatory decisions that directly affect the level of
competition. The starkest of these decisions is whether to have a regulated market, where
a regulated monopoly produces and sells electricity, or a restructured market, where firms
compete to supply electricity generation and retail it to consumers.

The competition induced by electricity market restructuring may affect technology adop-
tion through a few channels. Product market selection may force firms in restructured
markets to adopt technologies that maximize expected profits. Alternatively, the stability
provided by regulated markets may lead to lower financing costs and thus higher levels of
adoption. Market structure may also affect the price of electricity, which, in turn, affects the
returns to adoption.

As a step toward understanding this relationship, we study the effect of electricity market
structure on technology adoption in the solar and wind power industries. For solar, we study
the adoption of one innovation: panels that move to track the sun. The fraction of new
solar projects adopting solar axis tracking grew from about 20 percent in 2010 to nearly 60
percent in 2020. For wind, we study the adoption of larger wind turbines. Wind turbines
have steadily grown in size and efficiency over the last twenty years with new models coming
out each year. Both technologies increase production in return for a greater upfront cost.

Our measure of market structure corresponds to state-level decisions to restructure their
electricity markets. This decision typically involves introducing competition into both the

1Recent papers have more consistently found that competition decreases innovation. A negative relation-
ship has been found for the microprocessor industry (Goettler and Gordon, 2011), Chilean manufacturing
(Cusolito, Garcia-Marin and Maloney, 2023), U.S. manufacturing (Autor et al., 2020), and among firms that
were prosecuted for collusion (Kang, 2023). Yet, Bloom, Draca and Reenan (2016) find competition increases
innovation in European manufacturing, and Igami (2017) and Igami and Uetake (2020) find competition spurs
innovation in the hard disk drive industry, at least when there are few firms.
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retail and generation segments of the industry. While our state-level measure of market
structure was not randomly assigned, it was determined a decade before our sample. States
that restructured are observably different than regulated states, and we use rich data on
wind and solar resource quality to control for the geographic determinants of technology
choice. We also control directly for likely confounders, such as land prices and ordinances
restricting renewable development.

We first estimate models of axis-tracking adoption as a function of market structure
for the solar power industry. Our data include all utility-scale solar projects built in the
United States from 2001-2020. The channels above imply that market structure can affect
developers’ valuation for future revenues. We first construct a project-specific measure of
the expected revenue from each technology. We then estimate a choice model that allows
the weight developers place on future revenues to vary with market structure.

We also estimate models of wind turbine size as a function of market structure for the
wind power industry. Our data include all wind projects over 5 MW built in the United States
from 2001-2020. We do not estimate a choice model for this industry because size is a feature
of the chosen turbine rather than the choice itself. We instead regress the rotor diameter
of the chosen turbine on market structure and flexibly control for meteorological factors
that can affect this choice. Our preferred specification uses the double selection approach in
Belloni, Chernozhukov and Hansen (2014b) to select from high-dimensional wind resource
controls while allowing for correct inference.

We find that competition is associated with lower technology adoption. We find that solar
projects in restructured markets place a lower weight on expected revenues when making their
technology choice. Our estimates imply that solar projects in restructured markets are 8.6
percentage points, or 23 percent, less likely to adopt tracking panels than those in regulated
markets. Similarly, wind projects in restructured markets use turbines with rotor diameters
that are 2.9 meters, or 0.18 standard deviations, smaller than projects in regulated markets.

We find evidence that lower adoption in restructured markets is explained by higher
financing costs. While we do not observe whether solar developers sign long-term contracts,
we do observe this information for each wind project. Financing is done at the project-level
in these industries, and long-term contracts lower financing costs by reducing the probability
of default. We first find that signing a long-term contract is positively correlated with using
larger turbines, a pattern consistent with lower financing costs increasing adoption. We next
show that contracting variables related to financing costs are less favorable in restructured
markets. Wind projects in restructured markets are less likely to have long-term contracts
(58 vs. 83 percent). The quality of these contracts is also lower. We find that long-term
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contracts in restructured markets are for shorter terms on average (18.3 vs. 20.9 years) and
tend to be with less creditworthy buyers (59 vs. 84 percent are signed with a utility buyer).

The results in this paper imply that competition does not increase the probability of
adopting frontier technology in this context. There is an active policy debate about competi-
tion in electricity markets, and two U.S. states, Arizona and Nevada, considered restructuring
their electricity markets in 2018 (Wincher, 2018; Akers, 2018). While there are undoubtedly
other factors in this decision, our results suggest that another wave of restructuring may not
speed the adoption of frontier technologies.

This paper contributes to the limited empirical evidence on the relationship between
competition and technology adoption. Macher, Miller and Osborne (2021) finds that, holding
demand fixed, competition decreases technology adoption in the Portland cement industry.
The likely mechanism is that firms with fewer competitors produce more in equilibrium,
spreading the fixed cost of new technology over more units. While we find a similar result,
the mechanism is different. In our setting, producing more requires buying more solar panels
or wind turbines, so the fixed cost of the new technology roughly scales with output. Instead,
higher financing costs in more competitive markets likely explain our finding that competition
reduces adoption.2

This paper also contributes to the literature on the effects of electricity market restruc-
turing by considering its impact on firm investment decisions. Restructuring has been found
to cause generator-side efficiency gains in input use (Bushnell and Wolfram, 2005; Fabrizio,
Rose and Wolfram, 2007; Craig and Savage, 2013; Cicala, 2015; Chan et al., 2017), fewer
outages and enhanced safety at nuclear plants (Davis and Wolfram, 2012; Hausman, 2014),
and higher markups and prices (MacKay and Mercadal, 2021). A major goal of restructur-
ing was to give firms an incentive to innovate and invest in cost-cutting technologies, yet
its success at achieving these longer-term goals has received less attention. Papers studying
longer-term outcomes have found mixed evidence of restructuring’s success: restructuring
led to firms choosing less capital-intensive environmental compliance options (Fowlie, 2010),
an “overinvestment” in natural gas generation (Hill, 2021), a faster transition from coal to
natural gas for electricity generation (Gowrisankaran, Langer and Reguant, 2024), and an
increase in utility investment in transmission and distribution (Cicala, 2022b). In the con-
text of renewable energy, we find that restructuring reduces adoption of frontier generation
technologies.

2Both this paper and Macher, Miller and Osborne (2021) study the effect of competition on technology
adoption. In contrast, Fioretti et al. (2022) shows that technology adoption can also affect competition in
the context of the upstream oil and gas sector.
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Another closely related paper is Ishii (2004) which studies the adoption of natural gas
turbine technology. Using data from 1980 to 2001, he finds that independent power produc-
ers adopted the large turbines used for combined cycle plants more quickly than regulated
utilities. A key difference with this paper is that Ishii (2004) compares firms operating under
rate of return regulation to those that are not. In contrast, very few of the firms we study are
regulated utilities; the majority are independent power producers, many of which operate in
both regulated and restructured markets. Thus, our focus is on the market structure firms
operate in rather than differences in how the firms themselves are regulated.

Finally, this paper relates to work suggesting that the link between adoption and in-
novation may justify large consumer subsidies for renewable energy. Gerarden (2023) finds
that consumer subsidies for solar power spur adoption which, in turn, induces innovation by
solar panel manufacturers. This innovation reduces costs, thereby increasing long-run solar
adoption in other countries. Covert and Sweeney (2022) find that learning by doing exists in
wind turbine manufacturing and has important effects on firm incentives to innovate. Both
papers imply that innovation decisions in these industries are affected by firms’ willingness
to adopt new technology at a global scale. We find that electricity market competition may
decrease this willingness to adopt new technologies.3

The rest of this paper is organized as follows. Section 2 provides an overview of the
electricity market and describes the technological advances we study. Section 3 discusses the
data sources and main variables used in the analysis. Sections 4 and 5 describe the model
of technology adoption, empirical strategy, and results for the solar and wind power indus-
tries, respectively. Section 6 provides evidence for financing costs as a potential mechanism.
Section 7 concludes.

2 Market structure and technological innovations

2.1 Market structure, participants, and pricing

2.1.1 Two market types

To a first approximation, there are two types of electricity markets: regulated markets and
restructured markets. Historically, generation, transmission, distribution, and retailing were
thought of as natural monopolies, and one highly regulated firm would provide all four.

3These papers highlight the importance of spillovers from adoption. While the mechanisms whereby
competition affects adoption are likely similar worldwide, we expect the spillovers from the specific sub
national policy we study to be small. These spillovers would also bias us toward finding smaller effects of
competition on adoption.
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We refer to this structure as a regulated market. Over time, the minimum efficient scale
for generation fell, and states began restructuring their markets to allow for competition in
generation and retailing. In the late 1990s, all fifty states had hearings on whether they
should restructure their electricity markets, with nineteen states eventually restructuring
(Fowlie, 2010). If not for California’s electricity crisis in 2000, many more states might have
restructured. No states have restructured their electricity markets since the initial wave in
the late 1990s.

There are also competitive wholesale markets in regulated states, but we do not focus on
this dimension of competition. State-level electricity restructuring typically had three pieces:
retail competition, a competitive wholesale market operated by an independent system oper-
ator, and divestiture of generation by the incumbent utility. Individual power control areas
could also opt to join competitive wholesale markets (Cicala, 2022a), so some projects in
regulated states are located in the footprint of competitive wholesale markets. Our state-
level definition of restructuring classifies these projects as regulated, though we control for
their ability to participate in competitive wholesale markets in estimation.

2.1.2 The same firms build wind and solar projects in both market types

While this description of the two market types suggests that regulated utilities would build
renewable projects in regulated markets but not in restructured markets, the reality is more
complicated. Two types of firms build most utility-scale wind and solar projects: independent
power producers (IPPs) and investor-owned utilities (IOUs). The IPPs building renewables
can be large or small firms, and they often specialize in renewable energy projects. Investor-
owned utilities, on the other hand, are vertically integrated monopolies which are regulated
by state public utility commissions. While utilities own most fossil fuel generation in reg-
ulated electricity markets, this is not the case for either wind or solar generation. In both
restructured and regulated markets, most renewable generation is constructed and owned by
IPPs, and the most active IPPs build projects nationwide.

2.1.3 Price-setting differs across the two market types

While the same firms compete in both types of markets, the way power is sold differs across
the two. Most wind and solar generated electricity in the United States is sold through
long-term contracts called power purchase agreements (PPAs). These PPAs are signed prior
to construction and are usually necessary to secure financing for the project. In regulated
markets, the utility that acts as a regulated monopolist issues a request for proposals to
build utility-scale wind or solar generation. It will then sign a power purchase agreement
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with whichever firm submits the most attractive bid. In restructured markets, requests for
proposals are sometimes used, but independent power producers may also sign PPAs with
power retailers or private firms. As a result, prices in restructured markets are often set
by a process where sellers match to buyers while prices in regulated markets are set by a
mechanism similar to a procurement auction. Renewable energy projects in restructured
markets also have the option to enter without signing a PPA and instead sell their output
at the wholesale market price.4

2.2 Technological innovations

We next describe the technological innovations we study: axis tracking for solar and larger
turbines for wind. Both of these innovations increase production in return for higher upfront
costs. Adoption decisions are made at the time of project construction and cannot be changed
after a project is built.

2.2.1 Solar: Axis-tracking technology

Whereas traditional fixed-tilt panels are set permanently in one direction, solar axis-tracking
panels rotate from east to west over the course of the day to track the sun. Although the
technology is developed, tracking systems tend to have higher maintenance costs, and there
is still some uncertainty about their long-term durability (Bolinger, Seel and LaCommare,
2017). Tracking technology did not change much over our sample, and our measure of
technology adoption is whether a project used this technology.5 Figure 1a shows that the
use of tracking increased over our sample for both market types.

Tracking systems are more suitable in some locations than others. Tracking increases
production more in sunny areas than in cloudy areas because cloud cover diffuses solar
radiation (U.S. Energy Information Administration, 2017). Its advantage relative to fixed-
tilt panels is highest in the morning and evening, as both types of system operate at the

4Another channel through which renewable power is sold is through the implementation of the 1978
Public Utilities Regulatory Policies Act (PURPA). One of the objectives of PURPA was to promote renewable
generation by offering eligible IPPs, referred to as “qualifying facilities”, special rate and regulatory treatment
(FERC, n.d.). Regulated utilities usually sign long-term contracts with these qualifying facilities to purchase
renewable power. While how the contract rates are set varies by state, regulated states typically use a
competitive bidding process or an avoided cost formula determined by the utility. On the other hand,
restructured states are more likely to opt for market-based prices (National Regulatory Research Institute,
n.d.). Solar projects are much more likely than wind projects to be compensated under PURPA, and about
half of the solar projects in our data are qualifying facilities.

5Technology adoption in solar can also involve using panels with newer materials such as higher efficiency
silicon-cells or the recently developed perovskite-cells. Over 99 percent of the projects in our data use silicon
cells, and we do not observe information about the types of silicon cells. Thus, we restrict our classification
to tracking vs. fixed tilt.
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same angle around solar noon (Bushong, 2015). Finally, high wind speeds, poor soil quality,
or steep sites (grades greater than 5-6 percent) may preclude the use of tracking (Kiewit,
n.d.).

2.2.2 Wind: Larger turbines

A wind project is a collection of wind turbines, and these turbines are where most tech-
nological progress occurs. Because turbines last for over 20 years, technological progress
diffuses through the industry via new wind projects choosing more advanced turbine mod-
els.6 Power generation is proportional to the area swept by the rotor, so larger turbines
generate more electricity in the same wind conditions (Covert and Sweeney, 2022). Ad-
vancements in turbine technology have led to steadily larger turbines being used in both
regulated and restructured markets (Figure 1b), and we use turbine rotor diameter as our
measure of technological innovation for this industry.

Several factors affect the choice of turbine model and, thus, rotor diameter. This choice is
affected by meteorological factors like wind speed, wind direction, and atmospheric pressure,
as well as geographic factors like land availability. Other considerations include the cost of
the turbine and expected maintenance costs (Windustry, 2007). Local ordinances may also
affect this choice because the required setbacks from property lines are sometimes based on
turbine rotor diameter (Winikoff, 2022).

2.2.3 Technology is chosen at entry

Renewable energy projects take years to develop, and these technologies are chosen after site
selection but before construction. The first step in building a renewable energy project is
leasing land for the project. Next, the developer applies for permitting and interconnection
to the transmission system. It then tries to secure a long-term contract to sell the power,
at which point it secures financing and purchases the solar panels or wind turbines for the
project (AWEA, 2019). While sites are chosen at least a year before a project commits to
a technology, it is possible the desired technology affects site selection. For example, solar
axis-tracking requires more land for the same size (in MW) solar project, though it also
leads to higher production per MW of capacity. We abstract from this possibility by taking
locations as given when estimating models of technology choice.

6It is possible for wind developers to “re-power” projects by upgrading their turbines. While re-powering
is becoming more common, it is still rare in the United States. This is partly because the U.S. stock of
wind turbines is relatively new, and re-powering tends to happen once turbines are at least ten years old
(Fitzgerald and Giberson, 2021).
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Figure 1: Technology Adoption Over Time
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(b) Wind: Larger Turbines

Notes: Figure 1a plots the fraction of solar projects using tracking by year of operation and market structure.
Figure 1b plots the average (across wind projects) turbine rotor diameter in meters by year of operation. Red
line indicates the statistic for restructured states and blue line indicates the statistic for regulated states.

2.3 Relationship between market structure and technology adop-
tion

We hypothesize that there are three channels through which market structure may affect
adoption: competition, financing, and prices. The first is that more competition may induce
firms to adopt new technologies. While utilities rarely build wind and solar projects in
regulated markets, they still have considerable sway over the types of generation constructed.
These regulated monopolists have little incentive to favor adopting new technology, and may
even exhibit regulatory induced risk aversion (Jha, 2022). They may also consider other
factors besides cost when procuring renewable energy. This hypothesis would imply that
projects in regulated markets are less likely to adopt new technologies.

Market structure may also affect adoption through its effect on financing costs. Financing
is typically done at the project-level for wind and solar projects, with developers setting up
project-specific LLCs (Johnston, 2019). Naturally, a long-term contract to sell the power
will lead to lower financing costs, as will, among projects with long-term contracts, a longer
contract term. Financing costs also vary with the creditworthiness of the firm buying the
power (International Finance Corporation, 2015), so projects that sign long-term contracts
with regulated utilities may have lower financing costs. Lower financing costs should translate
into lower discount rates when making investment decisions, and thus a higher probability
of adopting these technologies. This hypothesis would therefore imply more adoption in
regulated markets.
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Finally, market structure should directly affect technology adoption through its effect
on the market price. Because these technologies increase production in return for higher
upfront costs, higher output prices increase the probability of adoption. The impetus for
restructuring was that introducing competition would result in lower prices by encouraging
the firms supplying electricity to innovate and cut costs. Despite this aim, the effect of
restructuring on market prices is ambiguous: restructuring gives firms an incentive to cut
costs but allows them to exercise market power. The evidence on the effect of restructuring
on prices is inconclusive (Bushnell, Mansur and Novan, 2017). More recently, MacKay and
Mercadal (2021) find that restructuring caused prices to increase, suggesting this channel
would lead to higher adoption in restructured markets.

Market structure may also affect adoption by affecting appropriability, but we do not
expect this channel to be important here. Unless there are strong intellectual property rights,
competition can result in too little innovation because firms appropriate only a fraction of
the benefits (Gilbert, 2006). Similarly, if there is uncertainty about the quality of a new
technology, early adopters bear the risks of adoption without capturing all of the benefits. For
the technologies we study, most of the uncertainty is about the durability of the technology
and will not be resolved for many years. Thus, developers that wait to adopt cannot learn
much from the experiences of early adopters.

3 Data

We use data on all utility-scale solar and wind generators that began operation in 2001-
2020. These data come from U.S. Energy Information Administration (EIA) Form 860. All
generators that are at least 1 MW in size and connected to the power grid are required to
submit Form 860 each year.

The EIA data also include the technology choice for each project. For solar projects, they
include whether the panels are fixed tilt, single-axis tracking, or dual-axis tracking. Very
few generators use dual-axis tracking (<2 percent), so we combine both single- and dual-axis
tracking into one indicator for tracking technology. For wind projects, these data include
the predominant wind turbine model used for each project, along with its rotor diameter,
capacity (rating), and hub height. Using turbine-level data from the American Clean Power
Association (formerly the American Wind Energy Association), we verify that most projects
use only one turbine model, and we use the rotor diameter for the predominant turbine model
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in estimation. Figure 2a and 2b show the spatial distribution of wind and solar projects, as
well as their technology choices.7

Figure 2: Spatial Distribution of Solar and Wind Projects
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Notes: Solar projects ≥ 1 MW, wind projects ≥ 5 MW; restructured states highlighted in light blue.

We use solar and wind resource data from the National Renewable Energy Laboratory
(NREL) to control for the effect of location on the expected production from each technology.
For each solar project, we use NREL’s PVWatts Version 6 to predict the total electricity
produced over a single year under each technology (Dobos, 2014). This algorithm takes solar
resource quality at the project location as an input.8 For wind, we use site specific hourly
data on averages and standard deviations of wind speeds and wind directions from NREL’s
Wind Integration National Dataset (WIND) Toolkit.9

We also construct a project-level price variable. To do so, we use data on resale revenue
and quantity from the EIA Form 923, retail prices from Form 861M, and Renewable Energy
Credit (REC) prices from S&P Global Market Intelligence and Lawrence Berkeley National

7We classify states as restructured using the list in Kleit and Rose (2016). These restructured states are
highlighted in light blue in Figure 2. Oregon and Montana are de facto more similar to regulated states,
and results are similar if we reclassify them as regulated rather than restructured: the negative impact of
restructuring on adoption is similar in magnitude for both solar and wind industries.

8PVWatts uses the hourly Typical Month Year (TMY) data on solar radiation for the calculation. TMY
data are derived from many years of data; they provide solar radiation and meteorological data that best
represent the median condition for a "typical" year. PVWatts combines these solar resource data with the
array type (fixed tilt/tracking), tilt angle, azimuth angle, and module type (standard, thin film, or premium)
to predict annual electricity production. We observe these panel characteristics in the EIA data. About 550
projects (14 percent of projects) have missing information on tilt or azimuth angles. For these projects, we
use the values suggested in the PVWatts manual (Dobos, 2014).

9The WIND Toolkit data includes meteorological conditions in the United States for the years 2007-2013
for 2 kilometers by 2 kilometers grid cells. It also includes data on air pressure and precipitation, but we do
not use these variables in our analysis.
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Laboratory. This construction largely follows Aldy, Gerarden and Sweeney (2023), and
Appendix A provides more detail. A key assumption is that the price the project receives
does not depend on its technology choice. For solar, we combine this price with predicted
production to construct a measure of expected revenues; Figure C1 shows histograms of
these measures of production and revenue. For wind, we include these prices as a control in
some specifications.

Our data on long term contracts for the wind power industry come from the American
Clean Power Association. These data are proprietary and at the wind project phase level.
For wind projects with multiple phases, each phase generally corresponds to one generator in
the EIA data. We match these data using the EIA plant code, operating date, project name,
and location. We group physical and virtual power purchase agreements into one indicator
for signing a long term contract. For projects missing these data, we collect these data by
hand from publicly available sources.

Finally, we construct control variables for land characteristics. These include county-level
average farm size and farm value per acre from the USDA Agricultural Census for the years
2002, 2007, 2012, and 2017. We linearly interpolate these data to construct annual measures.
We also construct a measure of terrain ruggedness using data from the National Elevation
Database. Specifically, we calculate the standard deviation of terrain elevation within the
30m×30m grid that contains the latitude and longitude for the project.

The samples we use in estimation drop projects with missing characteristics. We drop
solar projects with missing data on either their choice of tracking or the variables we use to
construct expected revenue (2.2 percent of projects, 1.3 percent of capacity). For wind, we
drop projects smaller than 5 MW. These small projects are much more likely to have missing
data on prices and long term contract status, and they account for less than 1 percent of
total capacity. For the handful of projects over 5 MW that are missing resale price data, we
impute prices using regional averages.

Table 1 reports summary statistics for key variables for the solar and wind sectors. A
striking difference is that solar projects are smaller than wind projects. The average capacity
of solar projects in our sample is 11 MW whereas the average capacity of wind projects is
109 MW. A slightly smaller proportion of solar projects are located in restructured states
than wind projects: 0.33 vs. 0.36. Finally, 7 percent of solar projects are owned by utilities,
compared to 16 percent of wind projects.

There are some differences in these variables across market types. Appendix Tables C1
and C2 compare the means for these variables by market type. For solar (Table C1), we
see that the average increase in production from using axis tracking is higher in regulated
states, while prices are higher in restructured states. Solar projects in regulated states are
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also larger on average (13 MW vs. 7 MW). For wind (Table C2), we find that prices tend to be
a bit higher in regulated markets, and projects are slightly larger on average in restructured
markets (116 MW vs. 104 MW).

Table 1: Summary Statistics

Solar
(N=4,086)

Wind
(N=842)

Mean Std. Dev. Mean Std. Dev.

Size (MW) 11.01 25.35 108.23 81.93
Restructured (0/1) 0.33 0.47 0.36 0.48
Utility (0/1) 0.07 0.26 0.16 0.37
Realized price ($/MWh) 104.31 51.36 49.21 29.39
Expected REC price ($/MWh) 5.60 11.22 4.35 8.21
∆ Expected Revenue ($100,000) 1.88 0.99 - -
Tracking (0/1) 0.37 0.48 - -
Wind speed (m/s) - - 8.01 0.75
Turbine Rotor Diameter (m) - - 91.05 16.41
Long-term contract (0/1) - - 0.70 0.46

Notes: Size is nameplate capacity. Restructured is an indicator for being located in a
state with a restructured electricity market. Utility is an indicator for if the project is
classified as a utility project in the EIA data. Expected Revenue is the difference in
revenue from a tracking panel v.s. fixed panel of size 5 MW. Realized price is a measure
of the price the project received for its power. Expected REC price is the average price
for renewable electricity credits at the project’s location. We use the sum of these prices
as our price measure. Long-term contract is an indicator for whether the project signed
a power purchase agreement to sell its power. We restrict the sample to non-utilities
(705 projects) for this statistic.

4 Technology adoption in the solar power industry

4.1 A model of the choice to use axis-tracking panels

We estimate models of axis-tracking adoption for solar projects. Appendix B provides a
microfoundation for the following Logit model:

Pr(trackingi = 1) = α ·∆revenuei + β ·∆revenuei × restructuredi + δ + ϵi (1)

12



where trackingi is an indicator for whether project i used tracking panels. ∆revenue is the
difference in annual revenue between tracking and fixed tilt panels for a 5 MW project in
the location of project i.10 We include operating year fixed effects (δ) to control for time
shocks common to all the projects, namely the cost difference between the two panel types.
The market for solar panels is global, with most panels produced in China (Gerarden, 2023),
so we expect projects in different locations to face similar prices. These fixed effects also
control for the federal solar subsidy (the ITC) and depreciation rules which vary across years
but not across projects within a year.

We allow for the coefficient on the difference in expected revenue to vary with market
structure. The model in Appendix B shows that the expected utility from future revenues
decreases with the discount rate, and discount rates may be lower in regulated markets.
Alternatively, deviations from profit maximization in regulated markets may result in a
lower weight on expected revenues in the choice problem. Our specification accounts for the
net effect of these channels.

Our preferred specifications use a control function to address the endogeneity of revenue.
We construct our revenue measure using project-specific realized prices. These prices are
likely correlated with the error term; for example, a project with low financing costs may be
more likely to use tracking and also willing to supply power at a lower price. To address this
endogeneity, we use a control function approach.11 We use a control function rather than
the instrumental variables estimator because the model is non-linear, but our approach is
akin to instrumenting for revenue with production. Our measure of electricity production
from a solar panel depends only on resource quality at the project site.

While restructuring was not randomly assigned, many of the factors that determined
which states restructured in the late 1990s are unlikely to affect developers’ technology
adoption decisions today. An exception is prices: states with high retail electricity prices
were more likely to restructure their electricity markets. These high prices usually resulted
from expensive investments in nuclear power (Borenstein and Bushnell, 2000). Our main
specification controls for price directly, alleviating this concern. Controlling for price affects

10We set the panel size to 5 MW across all projects rather than using actual size because size may be
affected by market structure (e.g., if large utilities in regulated markets are more willing to sign contracts
with large projects than the smaller retailers in restructured markets) and thus a bad control. Appendix
Table D3 shows results are robust to controlling for project size.

11Specifically, we regress the difference in revenues on the difference in production to recover the residuals
(µ̂i). We then estimate the logit regression with the predicted residuals (µ̂i) as a control variable in the
second step. The key assumption for the validity of this approach is that the errors in the first and the
second step are uncorrelated (Train, 2009; Petrin and Train, 2010). Therefore, conditional on µi, ∆revenuei
is independent of ϵi in Equation 1.
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our interpretation of the effect of market structure on adoption, something we return to later
in this section.

States that restructured are observably different than states that did not, and we control
for likely confounders directly. Many of the states that restructured are coastal states.
We include county-level farmland value to control for how these states likely have higher
land prices. These states also tend to be northern states, and we control for the impact of
latitude on the decision to use tracking via our measure of expected production. Restructured
states may also have more rugged terrain, and we control for ruggedness using a measure of
elevation changes. At the local level, one type of state may be more likely to have ordinances
restricting solar development, so we include a county-level control for the presence of a solar
ordinance.12 Finally, restructured states may be more supportive of renewable energy and
thus more likely to have renewable portfolio standards. These standards affect adoption via
their effect on the price of renewable energy, and we control for them by including expected
REC prices in the revenue measure.

4.2 Results

Across all specifications, we find that being located in a restructured market decreases the
probability of using tracking. Table 2 reports the marginal effects and their corresponding
standard errors. After we correct for the endogeneity of prices, an increase in the expected
revenue from tracking (relative to no tracking) leads to a statistically significant increase
in the probability of adoption. The elasticity of adoption with respect to revenue has the
expected positive sign only for the control function specifications. On average, a one percent
increase in revenue leads to 1.8 percent increase in probability of adopting tracking panels
(Column 4).

For our preferred specification in Column (4), the average marginal effect of restructuring
on adoption is a decrease of 8.6 percentage points. This difference is statistically significant
at the 1 percent level. The mean probability of using tracking is 0.37, implying that, at
the mean, projects in restructured states are 23 percent less likely to adopt axis-tracking
technology. We find similar estimates for the effect of restructuring on developers’ valuation
for revenue whether or not we control for local ordinances and land costs and ruggedness
(Column (3) vs. (4)).

Another way to interpret the magnitude of the estimated effect is to quantify the dif-
ference in financing costs across the two markets that would rationalize it. Appendix B

12It is possible these ordinances affect the decision to use tracking panels; for example, an ordinance
restricting the capacity of solar projects may make tracking more desirable since it results in more production
per MW of capacity.
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Table 2: Effect of Market Structure on Choice to Use Tracking Panels

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.018 0.013 0.364*** 0.285***
(0.016) (0.013) (0.039) (0.034)

∆ Revenue × Restructured -0.125*** -0.110*** -0.047*** -0.049***
(0.020) (0.019) (0.018) (0.019)

ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Ordinance ✓ ✓
Observations 4,086 4,086 4,086 4,086
Log Likelihood -2435 -2315 -2261 -2207
Revenue Elasticity -0.205 -0.214 2.268 1.787

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in Columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the
difference in expected revenue from using tracking versus not. Restructured is one if
the project is located in a restructured state. Revenue elasticity is the average elasticity
of revenue across all projects. All specifications include fixed effects for operating year
and a binary indicator for being located in the footprint of a competitive wholesale
market (ISO). Terrain ruggedness is the standard deviation of terrain elevation. Farm
Size & Value are county level average farm size and value per acre. Ordinance is one
if the project is located in a county with an ordinance restricting solar development.
Bootstrap standard errors (with 1000 replications) in parentheses, clustered by county.
Significance: *** p<0.01, ** p<0.05, * p<0.1.

shows that the ratio of the coefficients on the difference in revenue across market types is a
function of the discount rate. Suppose that project developers in regulated markets use a
discount rate of 5 percent for these investment decisions. If the entire difference in adoption
across market types is explained by differences in financing costs, our estimates would be
consistent with developers in restructured markets using a discount rate of 6 percent for
these decisions.13

13We find that the ratio of coefficients in regulated to restructured markets is 1.208. Assuming solar
projects last 25 years, this ratio corresponds to rrestructured(1−1/(1+rregulated)

25)
rregulated(1−1/(1+rrestructured)25)

. If we assume rregulated is 5,
then rrestructured is 6.0.
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We find these results are robust to excluding regulated utilities and controlling for de-
veloper and project size. Most regulated utilities are subject to rate-of-return regulation,
which gives them a financial incentive to choose capital-intensive technologies (Averch and
Johnson, 1962). Utilities account for only 7 percent of the solar projects in our sample,
and we estimate similar effects of restructuring on adoption when we exclude these projects
(Appendix Table D1). Another concern is that larger, more established solar developers may
be more likely to use tracking than smaller developers. This firm-level heterogeneity could
bias our estimates if large developers are also more likely to develop projects in one type
of market. We observe the solar developer for a subset of larger projects, and results are
quantitatively similar when we include an indicator for having a large developer (Appendix
Table D2). Finally, we find similar effects of restructuring if we control flexibly for project
size (Appendix Table D3).

Although our sample spans two decades, the vast majority of projects began operation
after 2010. We re-estimate Equation 1 separately for projects that began operation in 2001-
2010 and 2011-2020. Appendix Table D4 shows that only 2.7 percent of the projects in
our sample are from the earlier period. Results for the later period are similar to those
for the pooled sample. For the period from 2001-2010, we find a negative point estimate
for the effect of restructuring on developers’ valuation for revenue, but this estimate is not
statistically significant.

Finally, while projects in restructured markets are less likely to adopt tracking technology,
those operating in competitive wholesale markets are not. Most restructured states also set
up competitive wholesale markets, so these results may be capturing the effect of competitive
wholesale markets rather than the effect of state-level restructuring. The overlap is not
perfect: many regulated states lie in the footprint of competitive wholesale markets, and two
restructured states do not overlap with competitive wholesale markets. Therefore, we can
test this hypothesis by estimating a version of Model (1) that interacts revenue with whether
the project is located in a competitive wholesale market. Appendix Table D5 shows that we
do not find a statistically significant difference in the coefficient on revenue between projects
located within and outside the footprint of competitive wholesale markets.14

14Our baseline specification includes an indicator for being located in a competitive wholesale market,
the ISO indicator. The specifications in Appendix Table D5 do not include this indicator, and column (1)
shows that our main results for the effect of restructuring are not sensitive to its inclusion.
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4.3 Accounting for price effects

Table 2 reports estimates for the effect of market structure on adoption conditional on output
prices. Yet, market structure may also affect technology adoption via its effect on the market
price. We next consider whether accounting for price effects would change our conclusions.

We re-estimate Model (1) without controlling for prices, and find similar effects of re-
structuring. We consider this specification a conservative test for whether accounting for
price effects would change our conclusions. It is conservative because prices are higher in
restructured markets, and we do not expect the entire difference in prices across the mar-
ket types to be caused by restructuring. Appendix Table D6 reports estimates from Logit
models that include expected production rather than revenue. We still find a negative and
statistically significant relationship between restructuring and technology adoption. These
estimates are similar in magnitude to the baseline estimates in Table 2.

5 Technology adoption in the wind power industry

We next estimate a model of wind turbine rotor diameter as a function of market structure.
Wind project developers choose a wind turbine model to use for each project from a set of
available choices. We model the rotor diameter of the chosen turbine for project i as follows:

turbine sizei = β · restructuredi + X′Λ + δ + ui (2)

where turbine sizei is the rotor diameter of the turbine model used for project i, and
restructuredi is an indicator for i being located in a restructured market. The returns
to turbine size vary with site-specific wind resource quality. We flexibly control for wind
resources at the project site, summarized by the vector X. We use hourly averages of wind
speeds, hourly standard deviations of wind speeds, and hourly averages of wind direction
at 80 and 100 meters. The market for wind turbines is global, and we control for turbine
costs and availability using operating year fixed effects (δ). These fixed effects also control
for the federal wind subsidy (the PTC) and depreciation rules which vary across years but
not across projects within a year.15

15Wind projects that began operation in 2009-2012 could choose between a production tax credit and
a grant for a fraction of installation costs. We verify that results are robust to controlling for electing the
grant.
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5.1 Results

Table 3 shows that we find a negative relationship between restructuring and turbine size.
In the specification without wind resource controls (Column (1)), we find a small and sta-
tistically insignificant effect of restructuring on turbine size. Once we add wind controls in
Column (2), we find a statistically significant negative effect. The point estimate implies
that projects in restructured markets use turbines that are about 3.6 meters, or about 0.22
standard deviations, smaller on average. Larger turbines are more desirable in areas with
poorer wind resources, and the best wind resources are in the middle of the country and
tend to overlap with regulated states. This pattern may explain why we only find a negative
effect after controlling for resource quality.

One concern with this specification is overfitting due to the number of wind controls
(144 variables). To address this concern, we use Lasso to select the optimal number of wind
controls. Post-model selection methods generally suffer from omitted variable bias since
they tend to drop variables correlated with the predictors of interest (Belloni, Chernozhukov
and Hansen, 2014a). Thus, our preferred specification uses the double selection approach in
Belloni, Chernozhukov and Hansen (2014b) to select controls while still allowing for correct
inference.16

We also find a negative relationship between restructuring and adoption when we use
these variable selection procedures. For the Naive Lasso specification in column (3), the
point estimate for the effect of restructured is -2.2. Column (4) reports the estimate for the
coefficient on restructured for our preferred double selection specification. We find that wind
turbines in restructured markets are 2.9 meters smaller than those in regulated markets,
and this difference is statistically significant. This is a modest decrease of 0.18 standard
deviations, or 3.1 percent at the mean turbine size. It is about 30 percent of the within
operating-year standard deviation in turbine size of 9.3 meters.

We find that signing a long-term contract is associated with larger turbines. Column (5)
shows the estimated difference is relatively small, about 1.3 meters. We do not interpret
this estimate as causal because project developers select into signing long-term contracts,
but a causal effect would be consistent with economic theory. Long-term contracts reduce
financing costs, thereby increasing the returns to technology adoption.

Results are qualitatively similar for specifications that exclude utilities and control for
developer and project size. A larger share of utilities own wind projects than solar projects,

16This is a two step procedure wherein the first step uses Lasso to select variables that are predictors of
the outcome variable, and the second step uses Lasso to select variables that are predictors of treatment.
The treatment effect is then estimated using an OLS regression of the outcome on treatment and the union
of the controls selected in the first two steps.
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Table 3: Effect of Market Structure on Wind Turbine Size

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured -0.072 -3.627*** -2.237** -2.870** -2.627**
(0.914) (1.377) (1.082) (1.219) (1.274)

Long-term contract 1.353*
(0.702)

Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 842 842 842 842 842
R2 0.683 0.765 0.716 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor diameter
as the dependent variable. Column (3) shows coefficient estimate from using Lasso to select wind
controls, and Columns (4) and (5) uses double selection to correct for omitted variable bias in Naive
Lasso. The penalty term (λ) for Lasso in double selection and Naive Lasso is selected using 5-fold
Cross Validation. Sample is all wind projects at least 5 MW in nameplate capacity that began
operating in 2001-2020. Restructured is a dummy variable for if the project is in a restructured
state. Long-term contract is a dummy variable if the project signed a long-term contract to see its
power. All specifications include controls for average farm size and farm value, indicators for an
ISO and the presence of wind ordinance at the project location, and operating year fixed effects.
Wind controls include hourly average wind speeds and wind direction at 80m and 100m, and
standard deviation of wind speeds at 80m and 100m. Standard errors in parentheses, clustered by
county. Significance: *** p<0.01, ** p<0.05, * p<0.1.

and we first re-estimate model (2) excluding these projects. The point estimates for the effect
of restructuring are still negative, but they are slightly smaller and no longer statistically
significant (Appendix Table E1). Another concern is that large wind developers could be
more likely to use larger wind turbines and also more likely to build projects in one type of
market. We re-estimate the model including an indicator for having a large developer. The
resulting estimates are quantitatively similar (Appendix Table E2). Finally, the estimated
effect of restructuring is very similar if we control flexibly for wind project size (Appendix
Table E3).
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We do not find that these effects are different in the first or second half of our sample. As
with solar, we re-estimate the model separately for projects that began operation in 2001-
2010 and 2011-2020. Our wind sample is more balanced across the two time periods with
47 percent of projects beginning operation in 2001-2010. Appendix Table E4 shows that the
point estimates for the effect of being in a restructured market are similar across the two
time periods, and this coefficient is only statistically significant (at α = 0.10) for the later
period.

We find a similar estimate for the effect of competitive wholesale markets on turbine size,
though this effect is not statistically significant. Our baseline model includes an indicator
for being located in a competitive wholesale market, thus treating both types of market
structure symmetrically. For our preferred double selection specification, the coefficient on
this indicator -2.697 with a standard error of 1.702.

We also estimate specifications controlling for project-specific realized prices to test if
these effects are driven by price differences across market types. These results should be
viewed with caution because, unlike for our solar analysis, we do not account for the endo-
geneity of these prices. Appendix Table E5 shows the estimated coefficients are similar to
the baseline estimates.

6 Financing costs as a mechanism

We find that projects in more competitive markets are less likely to adopt frontier technology.
This section uses data on long-term contracts from the wind power industry to provide
descriptive evidence that differences in financing costs may explain this result.

The technologies we study cost more initially but result in higher production in the
future. We would thus expect lower financing costs to increase adoption. Renewable energy
financing is typically done at the project level, and long-term contracts to sell the power
result in lower financing costs. Consistent with this logic, we find that signing a long-term
contract is associated with using larger turbines (Appendix Table E6).

Long-term contracts are more common in regulated markets: 83 percent of wind projects
in regulated markets signed long-term contracts compared to 58 percent in restructured
markets.17 Yet, Column (5) in Table 3 shows that the negative point estimate for the effect
of restructuring, while diminished, is still present when we control for signing a long-term
contract. We next explore how other aspects of these contracts vary with market structure.

17To calculate this statistic, we limit our sample to non-utility projects (84 percent of projects). Regulated
utilities are usually vertically integrated: the utility building the project is the same utility selling power to
households. Thus, these projects have a reliable buyer for their power without needing to sign a long-term
contract.
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The two aspects we focus on are who the contract is with (utility vs. non-utility) and
the length of the contract. We expect both contracts with utilities and contracts for longer
terms to be more secure, and thus result in lower financing costs for the project that signs
them. A contract with a utility is more secure because regulated utilities are unlikely to go
bankrupt and default on the contract. They are regulated natural monopolies that can pass
costs through to a captive base of ratepayers. Similarly, contracts for longer terms have a
longer period before the project is exposed to output price risk.

For both of these measures, contracts in regulated markets are more desirable. Column
(1) of Table 4 shows that, of projects that sign long-term contracts, those in regulated
markets are more likely to sign them with utilities. Similarly, in column (3) we find that
long-term contracts in regulated markets tend to be for longer terms. Columns (2) and (4)
show that these estimates are robust to controlling for project characteristics. This pattern
is consistent with the way power is sold in regulated markets leading to lower financing costs
for wind and solar developers.

Table 4: Power Purchaser Type and Contract Length by Market Structure

Dependent variable:
Contract buyer: Utility (0/1) Contract length (years)

(1) (2) (3) (4)

Restructured -0.222*** -0.212*** -3.128*** -2.921***
(0.042) (0.043) (0.723) (0.736)

Mean utility share 0.744 0.744
Mean contract length (years) 19.69 19.69
Observations 596 596 363 363
R2 0.205 0.259 0.136 0.173
Operating Year FE ✓ ✓ ✓ ✓
Project Characteristics ✓ ✓

Notes: Columns (1) and (2) are results of linear probability models with dependent variable as a dummy
variable indicating whether the power purchaser is a utility. Columns (3) and (4) are regressions of
contract length on market structure. Sample is all wind projects at least 5 MW in size that began
operation in 2001-2020 and signed a long term contract. Projects with missing values for contract
off-taker (n=11) and contract length (n=244) are excluded. Project characteristics include capacity in
MW, a turbine manufacturer fixed effect, and an indicator for whether the project developer is amongst
the top five developers by number of projects. Standard errors in parentheses, clustered by county.
Significance: *** p<0.01, ** p<0.05, * p<0.1
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7 Conclusion

Electricity markets are expected to decarbonize in response to global climate change. Regula-
tory policies can either slow or increase the speed of this transition to a low-carbon electricity
grid. One such policy is restructuring, which introduces competition into electricity genera-
tion and retailing. In this paper, we study how restructuring affects the probability renewable
energy projects use frontier generation technologies. We find that renewable projects located
in restructured markets are less likely to use these technologies, and present evidence that
the likely mechanism is differences in financing costs across the two market types.

While the welfare effects of slower adoption are likely modest for the technologies we
study, the effects of slower adoption for all new technologies may be much larger. We would
expect larger effects if the mechanism of higher financing costs muting adoption generalizes
to entirely new generating technologies. Electricity generation accounted for 32 percent
of U.S. carbon emissions in 2021 (U.S. Energy Information Administration, 2022), so the
aggregate external benefits from a faster transition could be substantial. A willingness to
adopt new technology can also induce innovation by upstream manufacturers (Popp, 2019).
This innovation is key to achieving climate goals because, absent it, developing countries are
projected to have large increases in carbon emissions.

The results in this paper are informative about how competition affects innovation specif-
ically; they do not address the question of how market structure affects overall investment.
We take the level of investment in renewable energy as given and compare technology choices.
While it may be interesting to study these decisions jointly, unobserved factors that affect en-
try are more likely to be correlated with market structure than factors that affect technology
choice, and we leave this question to future work.

Instead, this paper contributes to the limited empirical evidence on the relationship
between competition and technology adoption. Many new technologies require substantial
upfront investments for benefits over a long time horizon. Their adoption is thus sensitive to
financing costs. We consider one such example, and find that the overall effect of competition
on adoption is negative.
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Appendix

A Constructing project specific prices

As described in Section 3, we construct project specific prices using resale data from EIA
Form 923, retail prices from EIA Form 861M, and Renewable Energy Credit (REC) price
data from S&P Global Market Intelligence and the Lawrence Berkeley National Laboratory.
This appendix describes this construction in more detail.

We first compute an average price for each project. Our primary data source is resale
revenue and quantity data from the EIA. These data are called resale because they refer to
the sale of electricity to a purchasing entity which then resells it to end-use consumers. The
EIA began collecting these plant-level data in 2011. For each year, we divide annual resale
revenue by resale quantity to get an average price. We then take the median of these prices
across years the project was in operation and adjust it to 2018 dollars. We assign the ISO
level average for the projects with missing resale prices.

Some projects also report retail sales in addition to sales for resale. For these projects,
we follow Aldy, Gerarden and Sweeney (2023) and use a weighted average of the resale price
and the retail price, where the weight on the resale price is the fraction of sales for resale
(mean 0.79 for solar, 0.98 for wind). Our measure of the retail price is the state level annual
average retail price from EIA Form 861M.

We also account for marginal revenue from sales of RECs. Many states have Renewable
Portfolio Standards which require firms that retail electricity to procure a set amount of
electricity from renewable sources. To operationalize this policy, states require these firms to
retire RECs each year. Solar and wind projects generate a REC for each unit of production,
and can sell these RECs to firms subject to the RPS. We combine state-level REC prices from
Lawrence Berkeley National Laboratory and S&P Global Market Intelligence. Some states
allow non-renewable entities to obtain RECs from qualifying renewable generators outside
the state, and we use cross-state REC compliance data from Lawrence Berkeley National
Laboratory to adjust for these cross-state sales. Finally, we add these expected REC prices
to the project-level prices.

This procedure largely follows the one used in Aldy, Gerarden and Sweeney (2023) to
construct project-level prices for wind projects. There are two key differences. First, their
measure of the output price is the maximum of prices derived from resale data from the EIA
and Power Purchase Agreement (PPA) prices from the American Wind Energy Association
and Bloomberg New Energy Finance. We do not incorporate PPA price data because we do
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not observe them for solar generators. Second, they use REC data from Marex Spectron,
whereas we use REC data from S&P Global Market Intelligence.

29



B A model of technology choice for solar projects

This section provides a microfoundation for our model of axis tracking adoption. Starting
from the full choice problem, we make several approximations to derive the specification we
take to data. We start with a model of expected profit maximization but then discuss how
market structure could affect developers’ objective function.

Solar developers choose whether to use axis tracking panels to maximize the expected
present value of profits. In each year of operation t, static profits from using technology
j ∈ {fixed, tracking} for site i are

πijt = pitQijt − Cijt (3)

where pit is the per MWh price of wind power at site i in year t, Qijt is annual production from
technology j at site i in year t, and Cijt is operations and maintenance costs for technology
j at site i in year t.

At the time of the technology decision y, the present value of expected profits for using
technology j at site i is

Πijy = −Fijy +
T∑
t=1

(
1

1 + r

)t

Ey

[
pitQijt − Cijt

]
(4)

where Fijy is the installation cost of the solar project with technology j in site i in year y,
r is the relevant annual interest rate for this investment decision, t is the year of operation,
and T is the life of the project. The expectation operator is denoted Ey to emphasize that
this is the expectation at the time of the technology decision y, before the project begins
operation. The current formulation assumes the technology is chosen immediately before
operation and one year before the project earns the operating profits from the first year of
operation.

To a first approximation, a developer’s expectation of static profits does not vary based
on the year of operation. Although there is variation in year-on-year production due to
variation in weather, these deviations from the average are not predictable. While prices can
vary over time, they are usually fixed via a power purchase agreement, and it is common
for contracts to specify a fixed price per MWh with pre-specified escalations to account
for inflation. Even for projects exposed to market prices, electricity prices are closely tied
to natural gas prices which, at the annual level, roughly follow a random walk. Finally,
operations and maintenance costs increase over time, but the increase is gradual until the
second half of the project’s lifespan, years which contribute little to expected profits. This
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approximation allows us to drop the t subscripts in the expectation and simplify

Πijy = −Fijy +
1

r

(
1− 1

(1 + r)T

)
︸ ︷︷ ︸

κ(r)

Ey

[
piQij − Cij

]
(5)

We can construct the expected quantity of production Qij from the data on solar resource
quality at the site. If we pair this with an expected price, we can constructed expected
annual revenue which we denote as R̃ij.

Πijy = −Fijy + κ(r)R̃ijy − κ(r)Cijy (6)

The installation costs, Fijy, consist of both the costs of site preparation and installation
and the cost of panels. Assume the site-specific characteristics (e.g. permitting, grading,
construction costs) do not depend on technology type, in which case they drop out of the
choice problem. Further assume that the per-unit cost of each type of panel is the same for
all developers, so that this cost can be captured by a year-by-technology FE, δjy, multiplied
by the project’s capacity. Finally, we abstract from the operations and maintenance cost
because we do not observe these costs in the data. The installation year-by-technology fixed
effect likely captures most of the relevant variation in these expected costs. The utility
function can now be written as

Uijy = δjy × sizei + κ(r)R̃ijy + ϵ̃ijy (7)

where sizei is the project’s capacity. Dividing through by capacity gives

Uijy = δjy + κ(r)Rijy + ϵijy (8)

where Rijy is revenue per MW of capacity. As discussed in section 2 the coefficient on revenue
may vary with market structure. It depends on the interest rate, and the relevant capital
costs may be lower in regulated markets resulting in a higher coefficient. Alternatively,
utilities in regulated markets are may procure power based on objectives other than cost
minimization, e.g., they may have a bias for the status quo technology; this behavior could
result in a lower coefficient on revenue in regulated markets. To allow for these possibilities,
we replace κ(r) with βm where m ∈ {regulated, restructured}.

Uijy = δjy + βmRijy + ϵijy (9)
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To take this model to data, we assume the error term follows a Type I Extreme Value
distribution and that developers choose the technology that maximizes their utility. The
probability of choosing solar axis tracking for site i in year y is

Pr(tracking = 1) = Pr(Utracking,y > Ufixed,y)

= Pr
(
ϵfixed,y − ϵtracking,y < βm(Rtracking,y −Rfixed,y) + δtracking,y − δfixed,y)

For a binary Logit model this reduces to,

Pr(tracking = 1) =
1

1 + exp(βm,tracking(Rtracking,y −Rfixed,y) + δtracking,y − δfixed,y)

=
1

1 + exp(βm∆R +∆δy)

=
1

1 + exp(α∆R + β∆R× restructured+ δ)

which is the model in Equation 1.
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C Supplementary Tables and Figures

Table C1: Summary Statistics by Restructuring Status for Solar Projects

Restructured
(N = 1335)

Regulated
(N=2751)

Difference
(1)-(3)

Mean Std Dev Mean Std Dev

(1) (2) (3) (4) (5)

Tracking (0/1) 0.23 0.42 0.44 0.50 -0.219***
Utility (0/1) 0.04 0.21 0.09 0.29 -0.046***
ISO (0/1) 0.89 0.31 0.50 0.50 0.390***
Solar Ordinance (0/1) 0.12 0.32 0.36 0.48 -0.243***
Nameplate Capacity (MW) 6.79 22.99 13.06 26.18 -6.273***
Realized Price ($/MWh) 122.36 59.18 95.55 44.55 26.813***
Expected REC Price ($/MWh) 13.38 15.29 1.80 5.43 11.579***
Elevation (std dev) 40.44 34.64 45.22 63.23 -4.786***
Average Farm Value (1000 $/acre) 13.20 18.64 6.91 7.72 6.297***
Average Farm Size (acre) 302.91 1069.69 416.18 625.56 -113.275***
∆ Production (MWh) 1578.65 215.56 1929.48 431.44 -350.831***
∆ Revenue ($100,000) 1.91 0.93 1.87 1.02 0.048

Notes: Descriptive statistics of dependent and key explanatory variables used in the Logit analysis for the
solar industry, broken down by restructuring status. Sample is all solar projects at least 1 MW in size that
began operation in 2001-2020. Column (5) reports the difference in means. Significance: *** p<0.01, **
p<0.05, * p<0.1.
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Table C2: Summary Statistics by Restructuring Status for Wind Projects

Restructured
(N=303)

Regulated
(N=539)

Difference
(1)-(3)

Mean Std Dev Mean Std Dev

(1) (2) (3) (4) (5)

Rotor Diameter (m) 91.67 17.24 90.69 15.93 0.979
Utility (0/1) 0.05 0.21 0.23 0.42 -0.182***
ISO (0/1) 1.00 0.06 0.67 0.47 0.327***
Wind Ordinance (0/1) 0.10 0.29 0.19 0.39 -0.094***
Nameplate Capacity (MW) 115.98 80.55 103.87 82.46 12.113**
Realized Price ($/MWh) 44.46 32.60 51.88 26.90 -7.419***
Expected REC Price ($/MWh) 5.41 10.11 3.79 6.94 1.620*
Wind Speed (m/s) 8.03 0.66 8.00 0.79 0.033
Average Farm Value (1000 $/acre) 2.95 2.45 3.28 2.87 -0.332*
Average Farm Size (acre) 1450.35 3278.57 1133.10 1237.54 317.245

Notes: Descriptive statistics of dependent and key explanatory variables used in the turbine size analysis
for the wind industry, broken down by restructuring status. Sample is all wind projects at least 5 MW
in size that began operation in 2001-2020. Column (5) reports the difference in means. Significance: ***
p<0.01, ** p<0.05, * p<0.1.
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Figure C1: Annual Energy Production and Revenue for Solar Projects
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(b) Annual Revenue (million $)

Notes: Annual energy production (in GWh) and revenue (million $) from a 5 MW fixed tilt and tracking
panel for all U.S. solar projects at least 1 MW in size that began operation in 2001-2020.

35



D Robustness checks for solar results

D.1 Results excluding solar projects owned by utilities

Table D1: Effect of Market Structure on Tracking: Excluding Utilities

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.019 0.012 0.401*** 0.297***
(0.018) (0.013) (0.043) (0.042)

∆ Revenue × Restructured -0.121*** -0.104*** -0.038* -0.042*
(0.019) (0.019) (0.021) (0.021)

ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Ordinance ✓ ✓
Observations 3,780 3,780 3,780 3,780
Log Likelihood -2257 -2123 -2078 -2020
Revenue Elasticity -0.187 -0.203 2.565 1.925

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit
model in columns (1) and (2). Control function in columns (3) and (4). Sample is
all non-utility solar projects that began operation in 2001-2020 with at least 1 MW in
size. ∆ Revenue is the difference in expected revenue from using tracking versus not.
Restructured is if the project is located in a restructured state. All specifications include
fixed effects for operating year and a binary indicator for ISO. Terrain ruggedness is the
standard deviation of terrain elevation and its square. Farm Size & Value are county-
level average farm size and value per acre. Ordinance is one if the project is located in
a county with a solar ordinance. Bootstrap standard errors (with 1000 replications) in
parentheses, clustered by county. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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D.2 Results controlling for developer size

Table D2: Effect of Market Structure on Tracking: Developer Size Control

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.016* 0.013 0.339*** 0.269***
(0.018) (0.013) (0.038) (0.034)

∆ Revenue × Restructured -0.109*** -0.108*** -0.047** -0.049**
(0.030) (0.019) (0.018) (0.019)

Large Developer 0.089* 0.058 0.153*** 0.100**
(0.052) (0.042) (0.046) (0.039)

ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Ordinance ✓ ✓
Observations 4,086 4,086 4,086 4,086
Log Likelihood -2427 -2312 -2261 -2207
Revenue Elasticity -0.179 -0.206 2.098 1.682

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit
model in columns (1) and (2). Control function in columns (3) and (4). Sample is all
solar projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue
is the difference in expected revenue from using tracking versus not. Restructured
is if the project is located in a restructured state. All specifications include fixed
effects for operating year and a binary indicator for ISO. Terrain ruggedness is the
standard deviation of terrain elevation and its square. Farm Size & Value are county-
level average farm size and value per acre. Ordinance is one if the project is located
in a county with a solar ordinance. Large Developer is an indicator for if the project
is developed by one of the larger solar developers (Strata Solar, First Solar, Cypress
Creek Renewables, NextEra Energy Resources, SunPower, Sempra Energy, Recurrent
Energy, and SunEdison). These data were hand collected for projects over 5 MW that
began operation from 2010-2019, and we only observe developers for 30 percent of the
projects in our data. Out of these, 37 percent are developed by a large developer.
Bootstrap standard errors (with 1000 replications) in parentheses, clustered by county.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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D.3 Results controlling for project size

Table D3: Effect of Market Structure on Tracking: Project Size Controls

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.029* 0.023 0.219*** 0.182***
(0.016) (0.014) (0.029) (0.029)

∆ Revenue × Restructured -0.093*** -0.085*** -0.047*** -0.047***
(0.015) (0.017) (0.017) (0.017)

ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Ordinance ✓ ✓
Observations 4,086 4,086 4,086 4,086
Log Likelihood -2244 -2178 -2166 -2126
Revenue Elasticity -0.071 -0.091 1.389 1.151

Notes: Average marginal effects from logit model of tracking (0/1). Standard Logit
model in columns (1) and (2). Control function in columns (3) and (4). Sample is all
solar projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue
is the difference in expected revenue from using tracking versus not. Restructured is
one if the project is located in a restructured state. Revenue elasticity is the average
elasticity of revenue across all projects. All specifications control for nameplate capacity
with indicators for 5-10 MW, 10-25 MW, 25-50 MW, and over 50 MW. All specifications
include fixed effects for operating year and a binary indicator for ISO. Terrain ruggedness
is the standard deviation of terrain elevation. Farm Size & Value are county-level average
farm size and value per acre. Ordinance is one if the project is located in a county with
a solar ordinance. Bootstrap standard errors with 1000 replications in parentheses for
columns (3) and (4). Significance: *** p<0.01, ** p<0.05, * p<0.1.
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D.4 Results for different time periods

Table D4: Effect of Market Structure on Tracking: Separately by Decade

Years: 2001 - 2010 Years: 2011 - 2020

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.031 0.040 0.385*** 0.297***
(0.098) (0.112) (0.039) (0.034)

∆ Revenue × Restructured -0.089 -0.070 -0.046** -0.048**
(0.159) (0.284) (0.018) (0.020)

Year FE ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Ordinance ✓ ✓
Observations 109 109 3,977 3,977
Log Likelihood -53 -52 -2205 -2150
Revenue Elasticity -0.029 0.161 2.361 1.842

Notes: Average marginal effects from logit model of tracking (0/1). Columns (1)
and (2) use sample of solar projects at least 1 MW in size that began operation
in 2001-2010. Columns (3) and (4) use sample of solar projects at least 1 MW in
size that began operation in 2011-2020. ∆ Revenue is the difference in expected
revenue from using tracking versus not. All specifications are corrected for revenue
endogeneity using a control function approach. Restructured is one if the project
is located in a restructured state. Revenue elasticity is the average elasticity of
revenue across all projects. All specifications include fixed effects for operating
year and a binary indicator for being located in the footprint of a competitive
wholesale market (ISO). Terrain ruggedness is the standard deviation of terrain
elevation. Farm Size & Value are county level average farm size and value per
acre. Ordinance is one if the project is located in a county with a solar ordinance.
Bootstrap standard errors (with 1000 replications) in parentheses, clustered by
county. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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D.5 Results comparing different measures of market structure

Table D5: Effect of Different Measures of Market Structure on Tracking Adoption

State-level
Restructuring

Competitive
Wholesale Market

Either

(1) (2) (3)

∆ Revenue ($100,000) 0.319*** 0.365*** 0.365***
(0.037) (0.030) (0.027)

∆ Revenue × Market Structure -0.048*** 0.007 0.010
(0.016) (0.017) (0.020)

Year FE ✓ ✓ ✓
Terrain Ruggedness ✓ ✓ ✓
Farm Size & Value ✓ ✓ ✓
Ordinance ✓ ✓ ✓
Observations 4,086 4,086 4,086
Log Likelihood -2210 -2220 -2220
Revenue Elasticity 2.075 2.516 2.532

Notes: Average marginal effects from logit model of tracking (0/1). Sample is all solar projects
at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the difference in expected
revenue from using tracking versus not. All specifications are corrected for revenue endogeneity
using a control function approach. State-level restructuring is a dummy variable for if the project
is in a restructured state. Competitive Wholesale Market is an indicator for being located in the
footprint of a competitive wholesale market. Either is the union of the two. All specifications
include fixed effects for operating year. Terrain ruggedness is the standard deviation of terrain
elevation and its square. Farm Size & Value are county-level average farm size and value per
acre. Ordinance is one if the project is located in a county with a solar ordinance. Bootstrap
standard errors (with 1000 replications) in parentheses, clustered by county. Significance: ***
p<0.01, ** p<0.05, * p<0.1.
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D.6 Results without conditioning on prices

Table D6: Effect of Market Structure on Tracking: Not Controlling for Price

Logit

(1) (2)

∆ Production (GWh) 0.318*** 0.263***
(0.035) (0.032)

∆ Production × Restructured -0.059*** -0.065***
(0.023) (0.023)

ISO ✓ ✓
Year FE ✓ ✓
Terrain Ruggedness ✓
Farm Size & Value ✓
Ordinance ✓
Observations 4,086 4,086
Log Likelihood -2317 -2241
Production Elasticity 1.663 1.396

Notes: Average marginal effects from logit model of tracking
(0/1). Sample is all solar projects at least 1 MW in size that
began operation in 2001-2020. ∆ Production is the differ-
ence in expected production from using tracking versus not.
Restructured is one if the project is located in a restructured
state. All specifications include fixed effects for operating year
and a binary indicator for ISO. Terrain ruggedness is the stan-
dard deviation of terrain elevation and its square. Farm Size
& Value are county-level average farm size and value per acre.
Ordinance is one if the project is located in a county with a
solar ordinance. Bootstrap standard errors (with 1000 repli-
cations) in parentheses, clustered by county. Significance: ***
p<0.01, ** p<0.05, * p<0.1.
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E Robustness checks for wind results

E.1 Results excluding utilities

Table E1: Effect of Market Structure on Wind Turbine Size: Excluding Utilities

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured -0.035 -2.654* -1.546 -1.217 -1.328
(0.922) (1.526) (1.124) (1.389) (1.299)

Long-term contract 1.900**
(0.940)

Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 705 705 705 705 705
R2 0.699 0.796 0.729 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. The penalty term (λ) for Lasso in double selection and Naive
Lasso is selected using 5-fold Cross Validation. Sample is all wind projects at least 5 MW in
nameplate capacity that began operating in 2001-2020. Restructured is a dummy variable
for if the project is in a restructured state. Long-term contract is a dummy variable if the
project signed a long-term contract to see its power. All specifications include controls for
average farm size and farm value, indicators for an ISO and the presence of wind ordinance at
the project location, and operating year fixed effects. Wind controls include hourly average
wind speeds and wind direction at 80m and 100m, and standard deviation of wind speeds
at 80m and 100m. Standard errors in parentheses, clustered by country. Significance: ***
p<0.01, ** p<0.05, * p<0.1.
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E.2 Results controlling for developer size

Table E2: Effect of Market Structure on Wind Turbine Size: Developer Size Control

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured -0.088 -3.539*** -2.039* -2.600** -2.303*
(0.919) (1.363) (1.055) (1.265) (1.311)

Large Developer -0.272 -1.185 -0.725 -0.928 -1.410*
(0.741) (0.813) (0.707) (0.755) (0.755)

Long-term contract 1.545**
(0.728)

Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 842 842 842 842 842
R2 0.683 0.766 0.716 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. The penalty term (λ) for Lasso in double selection and Naive Lasso
is selected using 5-fold Cross Validation. Sample is all wind projects at least 5 MW in nameplate
capacity that began operating in 2001-2020. Restructured is a dummy variable for if the project
is in a restructured state. Large Developer is an indicator for whether the project is developed
by one of the top 5 developers by number of projects (Avangrid Renewables, EDF Renewables,
EDP Renewables North America, Invenergy, NextEra Energy). Long-term contract is a dummy
variable if the project signed a long-term contract to see its power. All specifications include
controls for average farm size and farm value, indicators for an ISO and the presence of wind
ordinance at the project location, and operating year fixed effects. Wind controls include hourly
average wind speeds and wind direction at 80m and 100m, and standard deviation of wind
speeds at 80m and 100m. Standard errors in parentheses, clustered by country. Significance:
*** p<0.01, ** p<0.05, * p<0.1.

43



E.3 Results controlling for project size

Table E3: Effect of Market Structure on Wind Turbine Size: Project Size Controls

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured 0.020 -3.454** -1.655 -2.912** -2.792**
(0.862) (1.377) (1.011) (1.237) (1.304)

Long-term contract 1.196*
(0.711)

Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 842 842 842 842 842
R2 0.692 0.771 0.721 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. The penalty term (λ) for Lasso in double selection and Naive
Lasso is selected using 5-fold Cross Validation. Sample is all wind projects at least 5 MW in
nameplate capacity that began operating in 2001-2020. Restructured is a dummy variable for
if the project is in a restructured state. Long-term contract is a dummy variable if the project
signed a long-term contract to see its power. All specifications include controls for average farm
size and farm value, indicators for an ISO and the presence of wind ordinance at the project
location, and operating year fixed effects. All specifications control for nameplate capacity
with indicators for 25-50 MW, 50-100 MW, 100-150 MW, 150-200 MW, and above 200 MW.
Wind controls include hourly average wind speeds and wind direction at 80m and 100m, and
standard deviation of wind speeds at 80m and 100m. Standard errors in parentheses, clustered
by country. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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E.4 Results for different time periods

Table E4: Effect of Market Structure on Wind Turbine Size: Separately by Decade

Dependent variable: Rotor Diameter (m)

Years: 2001 - 2010 Years: 2011 - 2020

(1) (2) (3) (4)

Restructured -2.544 -2.244 -3.168* -3.035
(2.081) (2.141) (1.757) (1.855)

Long-term contract 1.879* 1.155
(0.992) (1.075)

ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 395 395 447 447
Mean Rotor Diameter 79.59 79.59 101.20 101.20

Notes: Notes: All specifications show coefficient estimates from double selec-
tion model with the penalty term (λ) selected using 5-fold Cross Validation.
Columns (1) and (2) use sample of wind projects at least 5 MW in size that be-
gan operation in 2001-2010. Columns (3) and (4) use sample of wind projects
at least 5 MW in size that began operation in 2011-2020. Restructured is a
dummy variable for if the project is in a restructured state. Long-term con-
tract is a dummy variable if the project signed a long-term contract to see
its power. All specifications include controls for average farm size and farm
value, indicators for an ISO and the presence of wind ordinance at the project
location, and operating year fixed effects. Wind controls include hourly aver-
age wind speeds and wind direction at 80m and 100m, and standard deviation
of wind speeds at 80m and 100m. Standard errors in parentheses, clustered
by country. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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E.5 Results accounting for price effects

Table E5: Effect of Market Structure on Wind Turbine Size: Including Realized Prices

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured -0.075 -3.661*** -2.041** -2.682** -2.696**
(0.921) (1.382) (1.029) (1.289) (1.355)

Realized price ($/MWh) 0.001 -0.010 0.006 -0.007 -0.018
(0.015) (0.018) (0.016) (0.018) (0.018)

Long-term contract 1.339*
(0.711)

Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓
Observations 842 842 842 842 842
R2 0.683 0.765 0.716 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor diameter
as the dependent variable. Column (3) shows coefficient estimate from using Lasso to select wind
controls, and Columns (4) and (5) uses double selection to correct for omitted variable bias in Naive
Lasso. The penalty term (λ) for Lasso in double selection and Naive Lasso is selected using 5-fold
Cross Validation. Sample is all wind projects at least 5 MW in nameplate capacity that began
operating in 2001-2020. Restructured is a dummy variable for if the project is in a restructured
state. Realized price ($/MWh) is the REC adjusted resale price that a project receives. All
specifications include controls for average farm size and farm value, indicators for an ISO and
the presence of wind ordinance at the project location, and operating year fixed effects. Wind
controls include hourly average wind speeds and wind direction at 80m and 100m, and standard
deviation of wind speeds at 80m and 100m. Standard errors in parentheses, clustered by country.
Significance: *** p<0.01, ** p<0.05, * p<0.1.
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E.6 Results for the effect of long-term contracts

Table E6: Effect of Long-term Contract on Wind Turbine Size

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4)

Long-term contract 1.830** 1.459** 1.988*** 1.494**
(0.732) (0.712) (0.704) (0.725)

Year FE ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓
Observations 842 842 842 842
R2 0.686 0.764 0.725 -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with
rotor diameter as the dependent variable. Column (3) shows coefficient estimate
from using Lasso to select wind controls, and Column (4) uses double selection to
correct for omitted variable bias in Naive Lasso. The penalty term (λ) for Lasso in
double selection and Naive Lasso is selected using 5-fold Cross Validation. Sample
is all wind projects at least 5 MW in nameplate capacity that began operating in
2001-2020. Long-term contract is a dummy variable if the project signed a long-
term contract to sell its power. All specifications include controls for average farm
size and farm value, indicators for an ISO and the presence of a wind ordinance at
the project location, and operating year fixed effects. Wind controls include hourly
average wind speeds and wind direction at 80m and 100m, and standard deviation
of wind speeds at 80m and 100m. Standard errors in parentheses, clustered by
county. Significance: *** p<0.01, ** p<0.05, * p<0.1.
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