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1 Introduction

Does competition increase innovation? The relationship is theoretically ambiguous (Schum-
peter, 1934, 1942; Arrow, 1962) and endogenous market structure complicates empirical
analysis. Existing empirical papers have found mixed results (Gilbert, 2006),1 suggesting
the effect of competition on innovation is context dependent. Similar challenges apply to
studying how competition affects technology adoption, a key driver of innovation (Macher,
Miller and Osborne, 2021).

Electricity markets are an interesting context to study how competition affects technology
adoption for two reasons. First, the electricity sector is expected to undergo massive changes
in response to global climate change. These changes will involve adopting new, cleaner ways
of generating electricity. Second, the level of competition is these markets is largely a policy
choice: policymakers make numerous regulatory decisions that directly affect the level of
competition. The starkest of these decisions is whether to have a regulated market, where
a regulated monopoly produces and sells electricity, or a restructured market, where firms
compete to supply electricity generation and retail it to consumers.

The competition induced by electricity market restructuring may affect technology adop-
tion through a few channels. Product market selection may force firms in restructured
markets to adopt technologies that maximize expected profits. Alternatively, the stability
provided by regulated markets may lead to lower financing costs and thus higher levels of
adoption. Market structure may also affect the price of electricity, which, in turn, affects the
returns to adoption.

As a step toward understanding this relationship, we study the effect of electricity market
structure on technology adoption in the solar and wind power industries. For solar, we study
the adoption of one innovation: panels that move to track the sun. The fraction of new
solar projects adopting solar axis tracking grew from about 20 percent in 2010 to nearly 60
percent in 2020. For wind, we study the adoption of larger wind turbines. Wind turbines
have steadily grown in size and efficiency over the last twenty years with new models coming
out each year. Both technologies increase production in return for a greater upfront cost.

Our measure of market structure corresponds to state-level decisions to restructure their
electricity markets. This decision typically involves introducing competition into both retail

1Recent papers have more consistently found that competition decreases innovation. A negative relation-
ship has been found for the microprocessor industry (Goettler and Gordon, 2011), Chilean manufacturing
(Cusolito, Garcia-Marin and Maloney, 2023), U.S. manufacturing (Autor et al., 2020), and among firms that
were prosecuted for collusion (Kang, 2023). Yet, Bloom, Draca and Reenan (2016) find competition increases
innovation in European manufacturing, and Igami (2017) and Igami and Uetake (2020) find competition spurs
innovation in the hard disk drive industry, at least when there are few firms.
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and wholesale markets. Regulated markets by this definition can overlap with competi-
tive wholesale markets, and we control for being located in the footprint of a competitive
wholesale market in estimation. While our state-level measure of market structure was not
randomly assigned, it was determined a decade before our sample. States that restructured
are observably different than regulated states, and we use rich data on wind and solar re-
source quality to control for the geographic determinants of technology choice. We also
control directly for likely confounders, such as land prices and ordinances restricting renew-
able development.

We first estimate models of axis-tracking adoption as a function of market structure
for the solar power industry. Our data include all utility-scale solar projects built in the
United States from 2001-2020. We derive the model we estimate from solar developers’
profit maximization problem. The channels above imply that market structure can affect
developers’ valuation for future revenues. We use detailed meteorological and price data to
construct a project-specific measure of the expected revenue from each technology, and we
allow the weight a developer places on this measure in its indirect utility function to vary
with market structure.

We also estimate models of wind turbine size as a function of market structure for the
wind power industry. Our data include all wind projects over 5 MW built in the United
States from 2001-2020. Because size is a feature of the chosen turbine rather than the choice
itself, we do not estimate a choice model for this industry. We instead regress the rotor
diameter of the chosen turbine on market structure and flexibly control for meteorological
factors that can affect this choice. Our preferred specification uses the double selection
approach in Belloni, Chernozhukov and Hansen (2014b) to select from high-dimensional
wind resource controls while allowing for correct inference. We also describe whether, all
else equal, wind projects that sign long-term contracts to sell electricity are more likely to
adopt larger turbines.

We find that competition is associated with lower technology adoption. Solar projects in
restructured markets are 8.4 percentage points, or 23 percent, less likely to adopt tracking
panels than projects in regulated markets. Similarly, wind projects in restructured markets
use turbines with rotor diameters that are 3.2 meters, or 3 percent, smaller than projects
in regulated markets. We also find that signing a long-term contract is positively correlated
with using larger turbines.

Lower adoption in restructured markets is likely explained by higher financing costs.
Financing is done at the project-level in these industries, and long-term contracts lower
financing costs by reducing the probability of default. While we do not observe if solar
developers sign a long-term contract for each project, we do observe this information for wind
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projects. Wind projects in restructured markets are less likely to sign long-term contracts
(58 vs. 83 percent). The quality of these contracts is also lower. We find that long-term
contracts in restructured markets are for shorter terms on average (18.3 vs. 20.9 years) and
tend to be with less creditworthy buyers (59 vs. 84 percent are signed with a utility buyer).

The results in this paper imply that competition does not increase the probability of
adopting frontier technology in this context. Arizona considered restructuring its electric-
ity market in 2018 (Wincher, 2018), and Nevada voters rejected a 2018 ballot initiative
that would have introduced retail competition and dissolved the state’s regulated monopoly
(Akers, 2018).2 While there are undoubtedly other factors in this decision, our results sug-
gest that another wave of states restructuring their electricity markets would not speed the
adoption of low-carbon generation technologies.

This paper contributes to the limited empirical evidence on the relationship between
competition and technology adoption. Macher, Miller and Osborne (2021) finds that, holding
demand fixed, competition decreases technology adoption in the Portland cement industry.
The likely mechanism is that firms with fewer competitors produce more in equilibrium,
spreading the fixed cost of new technology over more units. While we find a similar result,
the mechanism is different. In our setting, producing more requires buying more solar panels
or wind turbines, so the fixed cost of the new technology roughly scales with output. Instead,
higher financing costs likely explain our finding that competition reduces adoption.3

This paper also contributes to the literature on the effects of electricity market restruc-
turing by considering its impact on firm investment decisions. Restructuring has been found
to cause generator-side efficiency gains in input use (Bushnell and Wolfram, 2005; Fabrizio,
Rose and Wolfram, 2007; Craig and Savage, 2013; Cicala, 2015; Chan et al., 2017), fewer
outages and enhanced safety at nuclear plants (Davis and Wolfram, 2012; Hausman, 2014),
and higher markups and prices (MacKay and Mercadal, 2021). A major goal of restructur-
ing was to give firms an incentive to innovate and invest in cost-cutting technologies, yet
its success at achieving these longer-term goals has received less attention. The exceptions
have found mixed evidence of restructuring’s success: restructuring led to firms choosing less
capital-intensive environmental compliance options (Fowlie, 2010), an “overinvestment” in
natural gas generation (Hill, 2021), a faster transition from coal to natural gas for electricity
generation (Gowrisankaran, Langer and Reguant, 2024), and an increase in utility invest-

2This 2018 rejection was after Nevada voters approved the same initiative in 2016. Because it was a
constitutional amendment, voters had to approve the initiative twice for it to take effect. The 2018 campaign
was the most expensive ballot initiative in Nevada history, with the incumbent utility, NV Energy, spending
$63 million to defeat the measure (Snyder and Rindels, 2018).

3Both this paper and Macher, Miller and Osborne (2021) study the effect of competition on technology
adoption. In contrast, Fioretti et al. (2022) shows that technology adoption can also affect competition in
the context of the upstream oil and gas sector.
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ment in transmission and distribution (Cicala, 2022b). In the context of renewable energy,
we find that restructuring reduces adoption of frontier generation technologies.

Finally, this paper relates to recent work suggesting that the link between adoption and
innovation may justify large consumer subsidies for renewable energy. Gerarden (2022) finds
that consumer subsidies for purchasing solar spur adoption which, in turn, induces inno-
vation. This innovation by international firms then increases long-run solar adoption in
other countries. Covert and Sweeney (2022) find learning by doing exists in wind turbine
manufacturing and has important effects on firm incentives to innovate. Both papers imply
innovation decisions in these industries are affected by firms’ willingness to adopt new tech-
nology at a global scale. We find that electricity market competition likely decreases this
willingness to adopt new technologies.4

The rest of this paper is organized as follows. Section 2 provides an overview of the
electricity market and describes the technological advances we study. Section 3 discusses
the data sources and main variables used in the analysis. Section 4 and Section 5 describe
the model of technology adoption, empirical strategy, and results for the solar and wind
power industries respectively. Section 6 provides evidence for financing costs as a potential
mechanism. Section 7 concludes.

2 Market structure and technological innovations

2.1 Market structure, participants, and pricing

2.1.1 Two market types

To a first approximation, there are two types of electricity markets: regulated markets and
restructured markets. Historically, generation, transmission, distribution, and retailing were
thought of as natural monopolies, and one highly regulated firm would provide all four.
We refer to this structure as a regulated market. Over time, the minimum efficient scale
for generation fell, and states began restructuring their markets to allow for competition in
generation and retailing. In the late 1990s, all fifty states had hearings on whether they
should restructure their electricity markets, with nineteen states eventually restructuring
(Fowlie, 2010). If not for California’s electricity crisis in 2000, many more states might have

4These papers highlight the importance of spillovers from adoption. While the mechanisms whereby
competition affects adoption are likely similar worldwide, we expect the spillovers from the specific sub
national policy we study to be small. These spillovers would also bias us toward finding smaller effects of
competition on adoption.
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restructured. No states have restructured their electricity markets since the initial wave in
the late 1990s.

There are also competitive wholesale markets in regulated states, but we do not focus on
this dimension of competition. State-level electricity restructuring typically had three pieces:
retail competition, a competitive wholesale market operated by an independent system oper-
ator, and divestiture of generation by the incumbent utility. Individual power control areas
could also opt to join competitive wholesale markets (Cicala, 2022a), so some projects in
regulated states are located in the footprint of competitive wholesale markets. Our state-
level definition of restructuring classifies these projects as regulated, though we control for
their ability to participate in competitive wholesale markets in estimation.

2.1.2 The same firms build wind and solar projects in both market types

While this description of the two market types suggests that regulated utilities would build
renewable projects in regulated markets but not in restructured markets, the reality is more
complicated. Two types of firms build most utility-scale wind and solar projects: independent
power producers (IPPs) and investor-owned utilities (IOUs). The IPPs building renewables
can be large or small firms, and they often specialize in renewable energy projects. Investor-
owned utilities, on the other hand, are vertically integrated monopolies which are regulated
by state public utility commissions. While utilities own most fossil fuel generation in reg-
ulated electricity markets, this is not the case for either wind or solar generation. In both
restructured and regulated markets, most renewable generation is constructed and owned by
IPPs, and the most active IPPs build projects nationwide.

2.1.3 Price-setting differs across the two market types

While the same firms compete in both types of markets, the way power is sold differs across
the two. Most wind and solar generated electricity in the United States is sold through
long-term contracts called power purchase agreements (PPAs). These PPAs are signed prior
to construction and are usually necessary to secure financing for the project. In regulated
markets, the utility that acts as a regulated monopolist issues a request for proposals to
build utility-scale wind or solar generation. It will then sign a power purchase agreement
with whichever firm submits the most attractive bid. In restructured markets, requests for
proposals are sometimes used, but independent power producers may also sign PPAs with
power retailers or private firms. As a result, prices in restructured markets are often set
by a process where sellers match to buyers while prices in regulated markets are set by a
mechanism similar to a procurement auction. Renewable energy projects in restructured
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markets also have the option to enter without signing a PPA and instead sell their output
at the wholesale market price.5,6

2.2 Technological innovations

We next describe the technological innovations we study, both of which increase production
in return for higher upfront costs. For solar, this is the adoption of solar panels that track
the sun.7 For wind, this is the adoption of larger turbine models. Adoption decisions are
made at the time of project construction and cannot be changed after a project is built.

2.2.1 Solar: Axis-tracking technology

Whereas regulated fixed-tilt panels are set permanently in one direction, solar axis-tracking
panels rotate from east to west over the course of the day to track the sun. Although the
technology is developed, tracking systems tend to have higher maintenance costs, and there
is still some uncertainty about their long-term durability (Bolinger, Seel and LaCommare,
2017). Tracking technology did not change much over our sample, and our measure of
technology adoption is whether a project used this technology. Figure 1a shows that the use
of tracking has increased steadily in both market types.

Tracking systems are more suitable in some locations than others. Tracking increases
production more in sunny areas than in cloudy areas because cloud cover diffuses solar
radiation (U.S. Energy Information Administration, 2017). Its advantage relative to fixed-
tilt panels is highest in the morning and evening, as both types of system operate at the
same angle around solar noon (Bushong, 2015). Finally, high wind speeds, poor soil quality,

5These projects are called “merchant” generators. We only observe this status for wind projects, and 15
percent of wind projects in our sample are merchant generators. There are a few merchant generators in
regulated markets. These projects are located within the footprint of an independent system operator and
thus able to participate in wholesale markets; 5 percent of wind projects in regulated markets are merchant
compared to 29 percent in restructured markets.

6Another channel through which renewable power is sold is through the implementation of the 1978
Public Utilities Regulatory Policies Act (PURPA). One of the objectives of PURPA was to promote renewable
generation by offering eligible IPPs, referred to as “qualifying facilities”, special rate and regulatory treatment
(FERC, n.d.). Regulated utilities usually sign long-term contracts with these qualifying facilities to purchase
renewable power. While how contract rates are set varies by state, regulated states typically use a competitive
bidding process or an avoided cost formula determined by the utility. On the other hand, restructured states
are more likely to opt for market-based prices (National Regulatory Research Institute, n.d.). Solar projects
are much more likely than wind projects to be compensated under PURPA, and about half of the solar
projects in our data are qualifying facilities.

7Technology adoption in solar can also involve choice of using panels with newer materials apart from
using tracking. This includes using panels with higher efficiency silicon-cells or the recently developed
perovskite-cells. Over 99 percent of the projects in our data use silicon cells, and we do not observe infor-
mation about the types of silicon cells. Thus, we restrict our classification to tracking vs. fixed tilt.
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or steep sites (grades greater than 5-6 percent) may preclude the use of tracking (Kiewit,
n.d.).

2.2.2 Wind: Larger turbines

A wind project is a collection of wind turbines, and these turbines are where most tech-
nological progress occurs. Advancements in turbine technology have led to steadily larger
turbines. Power generation is proportional to the area swept by the rotor, so larger turbines
generate more energy in the same wind conditions (Covert and Sweeney, 2022). The choice
of turbine model is affected by meteorological factors like wind speed, wind direction, and
atmospheric pressure, as well as geographic factors like land availability. Other consider-
ations include the cost of the turbine and expected maintenance costs (Windustry, 2007).
Because turbines last for over 20 years, technological progress diffuses through the industry
via new wind projects choosing new, more advanced turbine models. The long-term increase
in rotor diameter shown in Figure 1b is due to projects adopting these new, larger models
in both restructured and regulated states.8 Thus, our measure of technology adoption is
whether projects use larger wind turbines, as a function of market structure.

Figure 1: Technology adoption over time
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Notes: Figure 1a plots the fraction of solar projects using tracking by year of operation and market structure.
Figure 1b plots the average (across wind projects) turbine rotor diameter in meters by year of operation. Red
line indicates the statistic for restructured states and blue line indicates the statistic for regulated state.

8It is possible for wind developers to “re-power” projects by upgrading their turbines. While re-powering
is becoming more common, it is still rare in the United States. This is partly because the U.S. stock of
wind turbines is relatively new, and re-powering tends to happen once turbines are at least ten years old
(Fitzgerald and Giberson, 2021).
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2.2.3 Technology is chosen at entry

Renewable energy projects take years to develop, and these technologies are chosen after site
selection but before construction. The first step in building a renewable energy project is
leasing land for the project. Next, the developer applies for permitting and interconnection
to the transmission system. It then tries to secure a long-term contract to sell the power,
at which point it secures financing and purchases the solar panels or wind turbines for the
project (AWEA, 2019). While sites are chosen at least a year before a project commits to
a technology, it is possible the desired technology affects sight selection. For example, solar
axis-tracking requires more land for the same size (in MW) solar project, though it also
leads to higher production per MW of capacity. We abstract from this possibility by taking
locations as given when estimating models of technology choice.

2.3 Relationship between market structure and technology adop-
tion

We hypothesize that there are three channels through which market structure may affect
adoption: competition, financing, and prices. The first is that more competition may induce
firms to adopt new technologies. While utilities rarely build wind and solar projects in
regulated markets, they still have considerable sway over the types of generation constructed.
These regulated monopolists have little incentive to favor adopting new technology, and may
even exhibit regulatory induced risk aversion (Jha, 2022). This hypothesis would imply that
projects in regulated markets are less likely to adopt new technologies.

Market structure may also affect adoption though its effect on financing costs. Financing
is typically done at the project-level for wind and solar projects, with developers setting up
project-specific LLCs (Johnston, 2019). Naturally, a long-term contract to sell the power
will lead to lower financing costs, as will, among projects with long-term contracts, a longer
contract term. Financing costs also vary with the creditworthiness of the firm buying the
power (International Finance Corporation, 2015), so projects that sign long-term contracts
with regulated utilities may have lower financing costs. Lower financing costs should translate
into lower discount rates when making investment decisions, and thus a higher probability of
adopting these technologies. Thus, this hypothesis would imply more adoption in regulated
markets.

Finally, market structure should directly affect technology adoption through its effect
on the market price. Because these technologies increase production in return for higher
upfront costs, higher output prices increase the probability of adoption. The impetus for
restructuring was that introducing competition would result in lower prices by encouraging
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the firms supplying electricity to innovate and cut costs. Despite this aim, the effect of
restructuring on market prices is ambiguous: restructuring gives firms an incentive to cut
costs but allows them to exercise market power. MacKay and Mercadal (2021) find this
second effect dominates, and electricity market restructuring increased prices. Thus, this
channel has an ambiguous effect on adoption, and based on what others have found, we
might expect it led to more adoption in restructured markets.

Market structure may also affect adoption by affecting appropriability, but we do not
expect this channel to be important here. Unless there are strong intellectual property rights,
competition can result in too little innovation because firms appropriate only a fraction of
the benefits (Gilbert, 2006). Similarly, if there is uncertainty about the quality of a new
technology, early adopters bear the risks of adoption without capturing all of the benefits. For
the technologies we study, most of the uncertainty is about the durability of the technology
and will not be resolved for many years. Thus, developers that wait to adopt cannot learn
much from the experiences of early adopters.

3 Data

We use data on all utility-scale solar and wind generators that began operation in 2001-
2020. These data come from U.S. Energy Information Administration (EIA) Form 860. All
generators that are at least 1 MW in size and connected to the power grid submit Form 860
each year.

The EIA data also include the technology choice for each project. For solar projects, they
include whether the panels are fixed tilt, single-axis tracking, or dual-axis tracking. Very
few generators use dual-axis tracking (<2 percent), so we combine both single- and dual-axis
tracking into one indicator for tracking technology. For wind projects, these data include
the predominant wind turbine model used for each project, along with its rotor diameter,
capacity (rating), and hub height. Using turbine-level data from the American Clean Power
Association, we verify that most projects use only one turbine model, and we use the rotor
diameter for the predominant turbine model in estimation. Figure 2a and 2b show the spatial
distribution of wind and solar projects, as well as their technology choices.9

We use data from the National Renewable Energy Laboratory (NREL) to construct
counterfactual electricity production under tracking v.s. fixed panel for solar projects. This

9We classify states as restructured using the list in Kleit and Rose (2016). These restructured states are
highlighted in light blue in Figure 2. Oregon and Montana are de facto more similar to regulated states,
and results are similar if we reclassify them as regulated rather than restructured: the negative impact of
restructuring on adoption is similar in magnitude for both solar and wind industries. Appendix A provides
more detail on the geographic distribution of our sample of solar projects.
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Figure 2: Spatial distribution of Solar and Wind Projects
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Notes: Solar projects ≥ 1 MW, wind projects ≥ 5 MW; restructured states highlighted in light blue.

measure is a function of site specific solar resources. For each solar project, we construct a
measure of total electricity production (GWh) for single-axis tracking and fixed tilt panels
using PVWatts Version 6 from NREL. The algorithm uses solar resource data at the project
site to calculate the total electricity produced over a single year under each technology
(Dobos, 2014).10 For wind, we use site specific hourly data on averages and standard devia-
tions of wind speeds and wind directions from NREL’s Wind Integration National Dataset
(WIND) Toolkit.11

To construct the revenue from different technologies, we combine our measure of counter-
factual production with an estimate of the price the project would receive for its electricity.
This estimate is based on the realized price the project received. We follow Aldy, Gerar-
den and Sweeney (2022) and construct this price at the project level using resale revenue
and quantity data from the EIA Form 923, retail prices from Form 861M, and Renewable
Energy Credit (REC) prices from S&P Global Market Intelligence and Lawrence Berkeley

10PVWatts uses the hourly Typical Month Year (TMY) data on solar radiation for the calculation. TMY
data are derived from many years of data; they provide solar radiation and meteorological data that best
represent the median condition for a "typical" year. PVWatts combines these solar resource data with the
array type (fixed tilt/tracking), tilt angle, azimuth angle, and module type (standard, thin film, or premium)
to predict annual energy production. We observe these panel characteristics in the EIA data. About 550
projects (14 percent of projects) have missing information on tilt or azimuth angles. For these projects, we
use the values suggested in the PVWatts manual (Dobos, 2014).

11The WIND Toolkit data includes meteorological conditions in the United States for the years 2007-2013
for 2 kilometers by 2 kilometers grid cells. It also includes data on air pressure and precipitation, but we do
not use these in our specifications.
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National Laboratory. Appendix B provides more detail. A key assumption is that the price
the project receives does not depend on its technology choice.

Our data on long term contracts for the wind power industry come from the American
Clean Power Association (formerly the American Wind Power Association). These data are
proprietary and at the wind project phase level. For wind projects with multiple phases, each
phase generally corresponds to one generator in the EIA data. We match these data using
the EIA plant code, operating date, project name, and location. We group regulated and
virtual power purchase agreements into one indicator for signing a long term contract. For
projects missing these data, we collect these data by hand from publicly available sources.

Finally, we construct control variables for land characteristics. These include county-level
average farm size and farm value per acre from the USDA Agricultural Census for the years
2002, 2007, 2012, and 2017. We linearly interpolate these data to construct annual measures.
We also construct a measure of terrain ruggedness using data from the National Elevation
Database. Specifically, we calculate the standard deviation of terrain elevation within the
30m×30m grid that contains the latitude and longitude for the project.

The samples we use in estimation drop projects with missing characteristics. We drop
solar projects with missing data on either their choice of tracking or the variables we use to
construct expected revenue (2.2 percent of projects, 1.3 percent of capacity). For wind, we
first drop projects smaller than 5 MW. These small projects are much more likely to have
missing characteristics and account for less than 1 percent of total capacity.

Table 1 reports summary statistics for key variables for the solar and wind sectors. A
striking difference is that solar projects are smaller than wind projects. The average capacity
of a solar project is 11 MW whereas the average capacity of a wind project is 109 MW. A
smaller proportion of solar projects are located in restructured states than wind projects:
0.33 vs. 0.41. Finally, 7 percent of solar projects are owned by utilities, compared to 16
percent of wind projects.12

12We report summary statistics by restructuring status for solar industry in Table D1 and for wind
industry in Table D2 in Appendix D.
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Table 1: Summary statistics

Solar Wind

Mean Std. Dev. Mean Std. Dev.

Size (MW) 11.01 25.35 108.23 81.93
Restructured (0/1) 0.33 0.47 0.36 0.48
Utility (0/1) 0.07 0.26 0.16 0.37
Realized price ($/MWh) 104.31 51.36 49.21 29.39
Expected REC price ($/MWh) 5.60 11.22 4.35 8.21
Expected Revenue ($100,000) 1.88 0.99 - -
Tracking (0/1) 0.37 0.48 - -
Wind speed (m/s) - - 8.01 0.75
Turbine Rotor Diameter (m) - - 91.05 16.41
Long-term contract (0/1) - - 0.70 0.46

Notes: Size is nameplate capacity. Restructured is an indicator for being located in a
state with a restructured electricity market. Utility is an indicator for if the project is
classified as a utility project in the EIA data. Expected Revenue is the difference in
revenue from a tracking panel v.s. fixed panel of size 5 MW. Realized price is a measure
of the price the project received for its power. Expected REC price is the average price
for renewable electricity credits at the project’s location. We use the sum of these
prices as our price measure. Long-term contract is an indicator for whether the project
signed a power purchase agreement to sell its power. We restrict the sample to non-
utilities (705 projects) for this statistic. Each observation is a solar or wind project in
our sample. N=4,086 for solar; N=842 for wind.

4 Technology adoption in the solar power industry

4.1 A model of the choice to use axis-tracking panels

We estimate models of axis-tracking adoption for solar projects. Appendix C microfounds
the following Logit model from a solar developer’s profit maximization problem:

Pr(trackingi = 1) = α ·∆revenuei + β ·∆revenuei × restructuredi + γ + ϵi (1)

where trackingi is an indicator for whether project i used tracking panels. ∆revenue is the
difference in annual revenue between tracking and fixed tilt panels for a 5 MW project in the
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location of project i.13 We include operating year fixed effects (γ) to control for time shocks
common to all the projects, namely the cost difference between the two panel types. The
market for solar panels is global, with most panels produced in China (Gerarden, 2022), so
we expect projects in different locations to face similar prices.

We allow for the coefficient on the difference in expected revenue to vary with market
structure. The model in Appendix C shows that the expected utility from future revenues
decreases with the discount rate, and discount rates may be lower in regulated markets.
Alternatively, deviations from profit maximization in regulated markets may result in a
lower weight on expected revenues in the choice problem. Our specification accounts for the
net effect of these channels.

Our preferred specifications use a control function to address the endogeneity of revenue.
We construct our revenue measure using project-specific realized prices. These prices are
likely correlated with the error term; for example, a project with low financing costs may be
more likely to use tracking and also willing to supply power at a lower price. To address this
endogeneity, we use a control function approach.14 We use a control function rather than
the instrumental variables estimator because the model is non-linear, but our approach is
akin to instrumenting for revenue with production. Our measure of energy production from
a solar panel depends only on resource quality at the project site.

After conditioning on price, restructuring is arguably exogenous. While restructuring
was not randomly assigned, many of the factors that determined which states restructured
in the late 1990s are unlikely to affect renewable energy developers’ technology adoption
decisions today. An exception is prices: states with the high retail electricity prices were
more likely to restructure their electricity markets. These high prices usually resulted from
expensive investments in nuclear power (Borenstein and Bushnell, 2000). Our main speci-
fication controls for price directly, alleviating this concern. Controlling for price affects our
interpretation of the effect of market structure on adoption, something we return to later in
this section.

States that restructured are observably different than states that did not, and we control
for likely confounders directly. Many of the states that restructured are coastal states. We
include county-level farmland value to control for how these states likely have higher land

13We set the panel size to 5 MW across all projects rather than using actual size because size may also
be affected by market structure and thus a bad control. Appendix Table Table F7 shows results are robust
to controlling for project size.

14Specifically, we regress the difference in revenues on the difference in production to recover the residuals
(µ̂i). We then estimate the logit regression with the predicted residuals (µ̂i) as a control variable in the
second step. The key assumption for the validity of this approach is that the errors in the first and the
second step are uncorrelated (Train, 2009; Petrin and Train, 2010). Therefore, conditional on µi, revenuei
is independent of ϵi in Equation 1.
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prices. These states also tend to be northern states, and we control for the impact of latitude
on the choice of tracking via our measure of expected production. Restructured states may
also have more rugged terrain, and we control for ruggedness using a measure of elevation
changes. Finally, restructured states may be more supportive of renewable energy and thus
more likely to have renewable portfolio standards. These standards affect adoption via their
effect on the price of renewable energy, which we control for by including expected REC
prices in the revenue measure.

4.2 Results

Across all specifications, we find that being located in a restructured market decreases the
probability of using tracking. Table 2 reports the marginal effects and their corresponding
standard errors. After we correct for the endogeneity of prices, an increase in the expected
revenue from tracking (relative to no tracking) leads to a statistically significant increase
in the probability of adoption. The elasticity of adoption with respect to revenue has the
expected positive sign only for the control function specifications. On average, a percent
increase in revenue leads to 1.8 percent increase in probability of adopting a tracking panel
(Column 4).

For our preferred specification in Column (4), the average marginal effect of restructuring
on adoption is a decrease of 8.4 percentage points. This difference is statistically significant
at the 1 percent level. The mean probability of using tracking is 0.37, implying that, at
the mean, projects in restructured states are 23 percent less likely to adopt axis-tracking
technology.

Another way to interpret the magnitude of the estimated effect is to quantify the differ-
ence in financing costs across the two markets that would rationalize it. Appendix C shows
the ratio of the coefficients on the difference in revenue across market types is a function of
the discount rate. Suppose that project developers in regulated markets use a discount rate
of 5 percent for these investment decisions. If the entire difference in adoption across market
types is explained by differences in financing costs, our estimates would be consistent with
developers in restructured markets using a discount rate of 7.5 percent for these decisions.15

We conduct several robustness checks. First, we address the concern that these results are
driven by North Carolina. Despite not being particularly sunny, North Carolina is the state
with the largest number of solar projects after California. Appendix Table F3 shows that

15We find that the ratio of coefficients in regulated to restructured markets is 1.507. Assuming solar
projects last 25 years, this ratio corresponds to rrestructured(1−1/(1+rregulated)

25)
rregulated(1−1/(1+rrestructured)25)

. If we assume rregulated is 5,
then rrestructured is 7.5.
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Table 2: Effect of market structure on choice to use tracking panels

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.018** 0.013 0.364*** 0.288***
(0.009) (0.009) (0.021) (0.023)

∆ Revenue × Restructured -0.125*** -0.105*** -0.047*** -0.045***
(0.009) (0.009) (0.011) (0.011)

Revenue Elasticity -0.205 -0.203 2.268 1.816
Observations 4,086 4,086 4,086 4,086
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Log Likelihood -2435 -2319 -2261 -2210

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the
difference in expected revenue from using tracking versus not. Restructured is one if the
project is located in a restructured state. Revenue elasticity is the average elasticity of
revenue across all projects. All specifications include fixed effects for operating year and
a binary indicator for being located in the footprint of a competitive wholesale market
(ISO). Terrain ruggedness is the standard deviation of terrain elevation. Farm Size &
Value are county level average farm size and value per acre. Bootstrap standard errors
with 1000 replications in parentheses for columns (3) and (4). Significance: *** p<0.01,
** p<0.05, *** p<0.1.

our estimates of the negative impact of restructuring on adoption are similar in magnitude
to our estimates in Table 2 when we control for being located in North Carolina.

High solar investment in North Carolina was likely due to state-level policies incentivizing
solar, one of which was favorable compensation for solar projects under the Public Utilities
Regulatory Policies Act (PURPA). To test whether our results are instead due to differences
in how PURPA was implemented across states, we estimate the model separately for projects
that do and do not qualify for PURPA (see Appendix Table F4). The negative impact of
restructured on adoption is moderately larger for projects that qualify for PURPA.

Another concern is that larger, more established solar developers may be more likely to
use tracking than smaller developers. This firm-level heterogeneity could bias our estimates
if large developers are also more likely to develop projects in regulated markets. We observe
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the solar developer for a subset of larger projects, and results are quantitatively similar when
we include an indicator for having a large developer (Appendix Table F5).

Finally, we show our results are not driven by utility projects. Most regulated utilities are
subject to rate-of-return regulation, which gives them a financial incentive to choose capital-
intensive technologies (Averch and Johnson, 1962). Utilities account for only 7 percent of the
solar projects in our sample, and we confirm that our results are not sensitive to including
these projects (Appendix Table F6).

4.3 Accounting for price effects

The results in Table 2 estimate the effect of market structure on adoption conditional on
output prices. Yet, market structure may also affect technology adoption via its effect on
the market price. We next consider whether accounting for price effects would change our
conclusions.16

We re-estimate the logit model of the choice to use tracking without controlling for
prices. We consider this a conservative test for whether accounting for price effects would
change our conclusions. It is conservative because we do not expect the entire difference in
prices across the market types to be caused by restructuring. Appendix Table F8 reports
estimates from logit models that include expected production rather than revenue. We still
find a negative and statistically significant relationship between restructuring and technology
adoption. These estimates are similar in magnitude to the baseline estimates in Table 2.
Thus, allowing for price effects would not change our conclusions.

5 Technology adoption in the wind power industry

We next estimate a model of turbine rotor diameter as a function of market structure.
Developers typically choose a wind turbine model to use for each project from a set of
available choices.

We model the rotor diameter of the chosen turbine for project i as follows:

turbine sizei = β · restructuredi + X′Λ + γ + ui (2)
16Higher prices in restructured markets could cause the total effect of restructuring on adoption to be

positive. The evidence of the effect of restructuring on prices is inconclusive (Bushnell, Mansur and Novan,
2017), but MacKay and Mercadal (2021) find that restructuring caused prices to increase. Even if restruc-
turing did not increase prices, we still might expect restructured states to have higher prices. In our data,
we see that solar (but not wind) projects located in restructured markets receive higher prices on average.
The technologies we study increase production, so a higher market price increases the returns to adoption.
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where turbine sizei is the rotor diameter (in meters) of the turbine model used in project i

and restructuredi is a binary indicator for market structure. The returns to using different
models vary with site-specific wind resource quality. We flexibly control for wind resources
at the project site, summarized by the vector X. We use hourly averages of wind speeds,
hourly standard deviations of wind speeds, and hourly averages of wind direction at 80 and
100 meters. The market for wind turbines is global, and we control for turbine costs using
operating year fixed effects (γ).

5.1 Results

Table 3 reports the coefficient estimates from Equation 2. Column (1) shows a small positive
and statistically insignificant effect of restructuring. However, this effect vanishes after ac-
counting for wind quality at the project site. Column (2) shows that projects in restructured
markets on average use 3 meters smaller wind turbines than the ones in regulated markets.
This effect translates to about 3.29 percent smaller wind turbines in restructured states. One
concern with this specification is overfitting due to the number of wind controls (about 144
terms). To address this concern, we use Lasso to select the optimal number of wind controls.
Column (3) shows the coefficient estimate from this post selection procedure, Naive Lasso
is similar to Column (2).

However, inference using post-model-selection method like Lasso is problematic. These
methods generally suffer from omitted variable bias since they tend to drop variables cor-
related with the predictors of interest (Belloni, Chernozhukov and Hansen, 2014a). Further
with limited data, this procedure can introduce sample variability issues in variable selection.

We use Double Selection or Double Lasso approach in Belloni, Chernozhukov and Hansen
(2014b) to address these issues in inference using Lasso for model selection. Double selection
is a two step procedure, wherein the first step involves selecting controls (using Lasso) that
are predictors of the outcome variable followed by a second step which is aimed at selecting
variables that are predictors of the treatment. The coefficient of interest is then estimated
using OLS of the outcome on the treatment and the union of controls selected in the first two
steps. This process corrects the variable selection issues (and thus, omitted variable bias) in
using Naive Lasso for inference (Belloni, Chernozhukov and Hansen, 2014a).

Column (4) in Table 3 reports the coefficient estimate of market structure using the
double-selection procedure. The estimate suggests a 3.18 meter smaller wind turbines in
restructured markets, which translates to a 3.5 percent effect. Coefficient estimates in Col-
umn (5) suggests that projects that sign long-term contracts are more likely to adopt larger
turbines. This effect of a long-term contract is statistically significant at the five percent
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level. We do not interpret this estimate as causal because project developers select into
signing long-term contracts, but a causal effect would be consistent with economic theory.
Long-term contracts reduce financing costs, thereby increasing the returns to technology
adoption.

Table 3: Effect of market structure on turbine rotor diameter (m)

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured 0.331 -2.997** -2.268** -3.185** -2.571*
(0.742) (1.520) (1.038) (1.436) (1.487)

Long-term contract 1.522**
(0.739)

R2 0.678 0.763 0.715 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05
Observations 842 842 842 842 842
Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. The penalty term (λ) for Lasso in double selection and ‘Naive
Lasso’ is selected using 10 fold Cross Validation. Sample is all wind projects at least 5 MW
in nameplate capacity that began operating in 2001-2020. Restructured is a dummy variable
for if the project is in a restructured state. Long-term contract is a dummy variable if the
project signed a long-term contract to see its power. All specifications include fixed effects
for operating year, binary indicator for ISO, and for the presence of wind ordinance at the
project location. Wind controls include hourly average wind speeds and wind direction at 80m
and 100m, and standard deviation of wind speeds at 80m and 100m. Robust standard errors
reported in parenthesis. Significance: *** p<0.01, ** p<0.05, *** p<0.1.

Controlling for the type of firms building these projects yields similar estimates. We
first address the concern that larger wind developers could be more likely to use larger wind
turbines than smaller developers and also more likely to build projects in one type of mar-
ket. We re-estimate the model including an indicator for large developer, and by including
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an interaction between market structure and large developer. The resulting estimates are
quantitatively similar (Appendix Table G10).

We also estimate specifications controlling for project specific realized prices to see if
some of these effects are driven by price differences across markets.17 We treat these results
as descriptive since prices could be endogenous to factors other than the ones included in
our regressions. Coefficient estimates in Appendix Table G12 are similar to the baseline
estimates, ruling out this concern.

6 Financing costs as a mechanism

We find that projects in more competitive markets are less likely to adopt frontier technology.
This difference is not explained by differences in output prices across the two market types.
This section provides descriptive evidence that it is instead due to differences in financing
costs.

Because renewable energy financing is typically done at the project level, long-term con-
tracts result in lower financing costs. These contracts are more common in regulated markets:
83 percent of wind projects in regulated markets signed long-term contracts compared to 58
percent in restructured markets.18 Yet, Table 3 shows that the negative point estimate for
the effect of restructuring, while diminished, does not disappear when we control for signing
a long-term contract. We next explore how other aspects of these contracts vary with market
structure.

The two aspects we focus on are who the contract is with (utility vs. non-utility) and
the length of the contract. We expect both contracts with utilities and contracts for longer
terms to be more secure, and thus result in lower financing costs for the project that signs
them. A contract with a utility is more secure because regulated utilities are unlikely to go
bankrupt and default on the contract. They are regulated natural monopolies that can pass
costs through to a captive base of ratepayers. Similarly, contracts for longer terms have a
longer period before the project is exposed to output price risk.

For both of these measures, contracts in regulated markets are more desirable. Column
(1) of Table 4 shows that, of projects that sign long-term contracts, those in regulated
markets are more likely to sign them with utilities. Similarly, in column (3) we find that

17Contrary to solar, wind projects located in restructured markets receive lower prices on average. Ex-
pected REC prices follow a similar pattern.

18To calculate this statistic, we limit our sample to non-utility projects (84 percent of projects). Regulated
utilities are usually vertically integrated: the utility building the project is the same utility selling power to
households. Thus, these projects have a reliable buyer for their power without needing to sign a long-term
contract.

19



long-term contracts in regulated markets tend to be for longer terms. Columns (2) and (4)
show that these estimates are robust to controlling for project characteristics. This pattern
is consistent with the way power is sold in regulated markets leading to lower financing costs
for wind and solar developers.

Table 4: Regressions of power purchaser type and contract length on market structure

Dependent variable:
Contract buyer: Utility (0/1) Contract length (years)

(1) (2) (3) (4)

Restructured -0.222*** -0.212*** -3.086*** -2.894***
(0.056) (0.045) (0.814) (0.774)

Mean utility share 0.744 0.744
Mean contract length (years) 19.69 19.69
Observations 597 597 364 364
R2 0.205 0.259 0.135 0.174
Operating Year FE ✓ ✓ ✓ ✓
Project Characteristics ✓ ✓

Notes: Columns (1) and (2) are results of linear probability models with dependent variable as a dummy
variable indicating whether the power purchaser is a utility. Columns (3) and (4) are regressions of
contract length on market structure. Sample is all wind projects at least 5 MW in size that began
operation in 2001-2020 and signed a long term contract. Projects with missing values for contract
off taker (n=11) and contract length (n=247) are excluded. Project characteristics include capacity
in MW, a turbine manufacturer fixed effect, and an indicator for whether the project developer is
amongst the top five developers. Robust standard errors in parentheses, clustered by state. Significance:
***p<0.01;**p<0.05;*p< 0.1

7 Conclusion

Electricity markets are expected to decarbonize in response to global climate change. Regula-
tory policies can either slow or increase the speed of this transition to a low-carbon electricity
grid. One such policy is restructuring, which introduces competition into electricity genera-
tion. In this paper, we study on how restructuring affects the probability renewable energy
projects use frontier generation technologies. We find that renewable projects located in
restructured markets are less likely to use these technologies and present evidence this result
is due to higher financing costs in restructured markets.
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While the welfare effects of slower adoption are likely modest for the technologies we
study, the effects of slower adoption for all technologies may be much larger. We would
expect larger effects if the mechanism of higher financing costs muting adoption generalizes
to entirely new generating technologies. Electricity generation accounted for 32 percent
of U.S. carbon emissions in 2021 (U.S. Energy Information Administration, 2022), so the
aggregate external benefits from a faster transition could be substantial. A willingness to
adopt new technology can also induce innovation by upstream manufacturers (Popp, 2019).
This innovation is key to achieving climate goals because, absent it, developing countries are
projected to have large increases in carbon emissions.

The results in this paper are informative about how competition affects innovation specif-
ically; they do not address the question of how market structure affects overall investment.
We take the level of investment in renewable energy as given and compare technology choices.
While it may be interesting to study these decisions jointly, unobserved factors that affect en-
try are more likely to be correlated with market structure than factors that affect technology
choice, and we leave this question to future work.

Instead, this paper contributes to the limited empirical evidence on the relationship
between competition and technology adoption. Many new technologies require substantial
upfront investments for benefits over a long time horizon. Their adoption is thus sensitive to
financing costs. We consider one such example, and find that the overall effect of competition
on adoption is negative.
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Appendix

A Additional detail on the sample of solar projects

The sample for the solar analysis includes 4,086 projects, 37 percent of which have tracking
technology. The size distribution is positively skewed: 75 percent of projects are less than
or equal to 5 MW, and a few projects are over 100 MW. Larger projects are more likely to
use tracking. About 28 percent of projects less than or equal to 5 MW in size use tracking
compared to 52 percent for projects over 5 MW.

Many solar projects are located in the Southwest (27 percent) and Southeast (25 percent)
where the solar resource quality is highest. Yet, 24 percent of projects in our sample are
located in the Northeast. The use of axis-tracking is more common in the Southwest because
the benefits of tracking are highest in areas with few clouds. Two states account for a large
share of the solar projects in our sample: California, with 17 percent, and North Carolina,
with 16 percent. North Carolina is a large outlier relative to its size and solar resource
quality. In addition to favorable rates under PURPA, North Carolina had a renewable
portfolio standard with a solar-specific target and a 35 percent state renewable energy tax
credit (Rocky Mountain Institute, 2015).

B Constructing project specific prices

As discussed in Section 3, we construct project specific prices from resale data from EIA
Form 923, retail prices from EIA Form 861M, and Renewable Energy Credit (REC) price
data from S&P Global Market Intelligence and the Lawrence Berkeley National Laboratory.

We first compute an average price for each project. Our primary data source is resale
price data from the EIA. These data are called resale because they are the revenue from
the sale of electricity to a purchasing entity which then resells it to end-use consumers. The
EIA began collecting these plant-level data in 2011. For each year, we divide annual resale
revenue by resale quantity to get an average price. We then take the median of these prices
across years the project was in operation and adjust it to 2018 dollars. We assign the ISO
level average for the projects with missing resale prices.

Some projects also report retail sales in addition to sales for resale. For these projects,
we follow Aldy, Gerarden and Sweeney (2022) and use a weighted average of the resale price
and the retail price, where the weight on the resale price is the fraction of sales for resale
(mean 0.79 for solar, 0.98 for wind). Our measure of the retail price is the state level annual
average retail price from EIA Form 861M.
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Next, we account for marginal revenue from sales of Renewable Energy Credits (RECs).
Many states have Renewable Portfolio Standards (RPS) which require firms that retail elec-
tricity to procure a set amount of electricity from renewable sources. To operationalize
this policy, states require these firms to retire RECs each year. Solar and wind projects
generate a REC for each unit of production, and can sell these RECs to firms subject to
the RPS. We combine state level REC prices from Lawrence Berkeley National Laboratory
and S&P Global Market Intelligence. Because some states allow non-renewable entities to
obtain RECs from qualifying renewable generators outside the state, we combine the REC
prices with cross-state REC compliance data from Lawrence Berkeley National Laboratory.
Finally, we add these expected REC prices to the project-level prices.

This procedure largely follows the one used in Aldy, Gerarden and Sweeney (2022) to
construct project-level prices for wind projects. There are two key differences. First, their
measure of the output price is the maximum of prices derived from resale data from the EIA
and PPA prices from the American Wind Energy Association and Bloomberg New Energy
Finance. Second, they use REC data from Marex Spectron, whereas we use REC data from
S&P Global Market Intelligence.
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C A model of technology choice for solar projects

This section microfounds our model of axis tracking adoption. Starting from the full choice
problem, we make several approximations to derive the utility specification we take to data.
We start with a model of expected profit maximization but then discuss how market structure
could affect developers’ objective function.

Solar developers choose whether to use axis tracking panels to maximize the expected
present value of profits. In each year of operation t, static profits from using technology
j ∈ {fixed, tracking} for site i are

πijt = pitQijt −OMijt (3)

where pit is the per MWh price of wind power at site i in year t, Qijt is annual production
from technology j at site i in year t, and OMijt is operations and maintenance costs for
technology j at site i in year t.19

At the time of the technology decision y, the present value of expected profits for using
technology j at site i is

Πijy = −Fijy +
T∑
t=1

(
1

1 + r

)t

Ey

[
pitQijt −OMijt]

)]
(4)

where Fijy is the installation cost of the solar project with technology j in site i in year y,
r is the relevant annual interest rate for this investment decision, t is the year of operation,
and T is the life of the project. The expectation operator is denoted Ey to emphasize that
this is the expectation at the time of the technology decision y, before the project begins
operation. The current formulation assumes the technology is chosen one year before the
project earns the revenue for the first year of operation.

To a first approximation, a developer’s expectation of static profits does not vary based
on the year of operation. Although there is variation in year-on-year production due to
variation in weather, these deviations from the average are not predictable. While prices can
vary over time, they are usually fixed via a power purchase agreement, and it is common
for contracts to specify a fixed price per MWh with pre-specified escalations to account
for inflation. Even for projects exposed to market prices, electricity prices are closely tied
to natural gas prices which, at the annual level, roughly follow a random walk. Finally,
operations and maintenance costs increase with years in service, but the increase is gradual

19This formulation where assumes a constant per MWh price, which is consistent with many long term
contracts, rather than a price that varies by hour of the day.
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until the second half of the project’s lifespan, years which contribute little to expected profits.
This approximation allows us to drop the t subscripts in the expectation and simplify

Πijy = −Fijy +
1

r

(
1− 1

(1 + r)T

)
︸ ︷︷ ︸

κ(r)

Ey

[
piQij −OMij

]
(5)

We can construct the expected quantity of production Qij from the data on solar resource
quality at the site. If we pair this with an expected price, we can constructed expected
annual revenue which we denote as R̃ij.

Πijy = −Fijy + κ(r)R̃ijy − κ(r)OMijy (6)

Assume that installation costs, Fijy, are additively separable in site-specific characteristics
and the cost of the panels. In this case, the site-specific characteristics (e.g. permitting,
grading, construction costs) drop out of the choice problem. Further assume that the per-
unit cost of each technology is the same for all developers, so it can be captured by a
year-by-technology FE, δjy, multiplied by the project’s capacity. Finally, we abstract from
the operations and maintenance term because we do not observe these costs in the data.
The installation year-by-technology fixed effect likely captures most of the relevant variation
in these expected costs. The utility function can now be written as

Uijy = δjy × sizei + κ(r)R̃ijy + ϵ̃ijy (7)

where sizei is the project’s capacity. Dividing through by capacity gives

Uijy = δjy + κ(r)Rijy + ϵijy (8)

where R is revenue per MW of capacity. As discussed in section 2 the coefficient on revenue
may vary with market structure. It depends on the interest rate, and the relevant capital
costs may be lower in regulated markets. Alternatively, if utilities in regulated markets are
procuring power based on objectives other than cost minimization, e.g., if these utilities have
a bias for status quo technology, observed technology choices by developers could reflect these
utilities lower valuations for revenues. To allow for these possibilities, we replace κ(r) with
βm where m ∈ {regulated, restructured}.

Uijy = δjy + βmRijy + ϵijy (9)
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To take this model to data, we assume the error term follows a type I extreme value
distribution and that developers choose the technology that maximizes their utility. The
probability of choosing solar axis tracking for site i in year y is

Pr(tracking = 1) = Pr(Utracking,y > Ufixed,y)

= Pr
(
ϵfixed,y − ϵtracking,y < βm(Rtracking,y −Rfixed,y) + δtracking,y − δfixed,y)

For a binary logit model this reduces to,

Pr(tracking = 1) =
1

1 + exp(βm,tracking(Rtracking,y −Rfixed,y) + δtracking,y)
=

1

1 + exp(βm∆R + δy)

which is the model in Equation Equation 1.20

20Note that we normalize the operating year fixed effects coefficients for fixed tilt panel to be zero.
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D Supplementary Tables

D.1 Descriptive Statistics by Restructuring Status

Table D1: Summary statistics by Restructuring Status for Solar Industry

Restructured
(N = 1335)

Regulated
(N=2751)

Difference
(1)-(3)

Mean Std Dev Mean Std Dev

(1) (2) (3) (4) (5)

Tracking (0/1) 0.23 0.42 0.44 0.50 -0.219***
Nameplate Capacity (MW) 6.79 22.99 13.06 26.18 -6.273***
Utility (0/1) 0.04 0.21 0.09 0.29 -0.046***
Realized Price ($/MWh) 122.36 59.18 95.55 44.55 26.813***
Elevation (std dev) 40.44 34.64 45.22 63.23 -4.786***
Farm value per acre ($ 1000s) 13.20 18.64 6.91 7.72 6.297***
Farm size per acre 302.91 1069.69 416.18 625.56 -113.275***
∆ Production (MWh) 1578.65 215.56 1929.48 431.44 -350.831***
∆ Revenue (100,000 $) 1.91 0.93 1.87 1.02 0.048

Notes: This table reports descriptive statistics of dependent and key explanatory variables used in
the solar logit analysis, broken down by restructuring status. Sample is all solar projects at least 1
MW in size that began operation in 2001-2020. Total number of solar projects in restructured states
is 1335 and those in regulated states is 2751. Column (5) reports the difference in mean. Significance:
*** p<0.01, ** p<0.05, *** p<0.1.
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Table D2: Summary statistics by Restructuring Status for Wind Industry

Restructured
(N=303)

Regulated
(N=539) Difference

Mean Std Dev Mean Std Dev

(1) (2) (3) (4) (1)-(3)

Rotor Diameter (m) 91.67 17.24 90.69 15.93 0.979
Nameplate Capacity (MW) 115.98 80.55 103.87 82.46 12.113**
Utility (0/1) 0.05 0.21 0.23 0.42 -0.182***
Realized Price ($/MWh) 44.46 32.60 51.88 26.90 -7.419***
Expected REC Price ($/MWh) 5.41 10.11 3.79 6.94 1.620*
Wind Speed (m/s) 8.03 0.66 8.00 0.79 0.033
Wind Ordinance (0/1) 0.10 0.29 0.19 0.39 -0.094***

Notes: This table reports descriptive statistics of dependent and key explanatory variables used
in the turbine size analysis for the wind industry, broken down by restructuring status. Sample is
all wind projects at least 5 MW in size that began operation in 2001-2020. Total number of wind
projects in restructured states is 303 and those in regulated states is 539. Column (5) reports the
difference in mean. Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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E Supplementary Figures

Figure E1: Annual energy production and revenue for solar projects
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(a) Annual energy production (GWh)
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(b) Annual revenue (million $)

Notes: Annual energy production (in GWh) and revenue (million $) from a 5 MW fixed tilt and tracking
panel for all U.S. solar projects at least 1 MW in size that began operation in 2001-2020.

Figure E2: Histogram of realized prices for wind and solar projects
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Notes: Sample is all solar projects at least 1 MW in size that began operation in 2001 - 2020, and all wind
projects of at least 5 MW in size that began operation in 2001-2020.
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F Robustness checks for solar results

F.1 Results controlling for projects in North Carolina

Table F3: Effect of market structure on choice to use tracking panels

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) -0.012 -0.012 0.352*** 0.273***
(0.009) (0.009) (0.025) (0.026)

∆ Revenue × Restructured -0.124*** -0.106*** -0.054*** -0.050***
(0.008) (0.009) (0.011) (0.012)

North Carolina -0.318*** -0.283*** 0.013 -0.049
(0.018) (0.020) (0.053) (0.048)

Revenue Elasticity -0.399 -0.368 2.212 1.735
Observations 4,086 4,086 4,086 4,086
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Log Likelihood -2367 -2269 -2223 -2175

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the
difference in expected revenue from using tracking versus not. Restructured is one if the
project is located in a restructured state. Revenue elasticity is the average elasticity of
revenue across all projects. North Carolina is an indicator for projects in North Carolina.
All specifications include fixed effects for operating year and a binary indicator for ISO.
Terrain ruggedness is the standard deviation of terrain elevation. Farm Size & Value are
county level average farm size and value per acre. Bootstrap standard errors with 1000
replications in parentheses for columns (3) and (4). Significance: *** p<0.01, ** p<0.05,
*** p<0.1.
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F.2 Results by projects qualifying for PURPA rates

Table F4: Logit regression of tracking on market structure

Uncorrected Control Function

Sample Not QF QF Not QF QF
(1) (2) (3) (4)

∆ Revenue ($100,000) -0.036*** 0.071*** 0.322*** 0.291***
(0.012) (0.013) (0.034) (0.035)

∆ Revenue × Restructured -0.078*** -0.146*** -0.006 -0.104***
(0.012) (0.013) (0.014) (0.017)

Revenue Elasticity -0.424 0.0272 2.404 1.584
Observations 2,085 1,977 2,085 1,977
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓ ✓ ✓
Farm Size & Value ✓ ✓ ✓ ✓
Log Likelihood -1200 -1029 -1121 -998.9

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Columns (2) and (4)
restricts sample to projects that qualify under PURPA and Columns (1) and (3) restricts
sample to projects that do not qualify under PURPA. Sample is all solar projects at
least 1 MW in size that began operation in 2001-2020. We do not observe qualifying
facility status for 24 projects. ∆ Revenue is the difference in expected revenue from using
tracking versus not. Restructured is if the project is located in a restructured state. All
specifications include fixed effects for operating year and a binary indicator for ISO.
Terrain ruggedness is the standard deviation of terrain elevation and its square. Farm
Size & Value are county level average farm size and value per acre. Bootstrap standard
errors with 1000 replications in parentheses for columns (3) and (4). Significance: ***
p<0.01, ** p<0.05, *** p<0.1.
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F.3 Results controlling for developer size

Table F5: Logit regression of tracking on market structure

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.016* 0.013 0.339*** 0.272***
(0.010) (0.009) (0.021) (0.022)

∆ Revenue × Restructured -0.109*** -0.103*** -0.047*** -0.044***
(0.019) (0.009) (0.011) (0.011)

Large Developer 0.089*** 0.060*** 0.153*** 0.102***
(0.023) (0.023) (0.023) (0.023)

Revenue Elasticity -0.179 -0.194 2.098 1.709
Observations 4,086 4,086 4,086 4,086
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Log Likelihood -2427 -2316 -2261 -2210

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the
difference in expected revenue from using tracking versus not. Restructured is if the
project is located in a restructured state. All specifications include fixed effects for oper-
ating year and a binary indicator for ISO. Terrain ruggedness is the standard deviation
of terrain elevation and its square. Farm Size & Value are county level average farm size
and value per acre. Large Developer is an indicator for projects built by one of the larger
solar developers. We the classify following developers as large developers: Strata Solar,
First Solar, Cypress Creek Renewables, NextEra Energy Resources, SunPower, Sempra
Energy, Recurrent Energy, and SunEdison. These data were hand collected for projects
over 5 MW that began operation from 2010-2019, and we only observe developers for 30
percent of the projects in our data. Out of these, 36 percent are developed by a large
developer. Bootstrap standard errors with 1000 replications in parentheses for columns
(3) and (4). Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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F.4 Results excluding utilities

Table F6: Logit regression of tracking on market structure

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.019** 0.012 0.401*** 0.148***
(0.009) (0.009) (0.022) (0.018)

∆ Revenue × Restructured -0.121*** -0.098*** -0.038*** -0.084***
(0.009) (0.009) (0.011) (0.010)

Revenue Elasticity -0.187 -0.187 2.565 0.744
Observations 3,780 3,780 3,780 3,780
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Log Likelihood -2257 -2129 -2078 -2081

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects, excluding utilities that began operation in 2001-2020 with at least 1 MW in
size. ∆ Revenue is the difference in expected revenue from using tracking versus not.
Restructured is if the project is located in a restructured state. All specifications include
fixed effects for operating year and a binary indicator for ISO. Terrain ruggedness is the
standard deviation of terrain elevation and its square. Farm Size & Value are county level
average farm size and value per acre. Bootstrap standard errors with 1000 replications
in parentheses for columns (3) and (4). Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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F.5 Results controlling for project size

Table F7: Effect of market structure on choice to use tracking panels

Uncorrected Control Function

(1) (2) (3) (4)

∆ Revenue ($100,000) 0.027*** 0.019** 0.256*** 0.217***
(0.008) (0.009) (0.019) (0.021)

∆ Revenue × Restructured -0.104*** -0.091*** -0.048*** -0.045***
(0.008) (0.009) (0.010) (0.011)

Nameplate Capacity (MW) 0.005*** 0.004*** 0.006*** 0.005***
(0.000) (0.000) (0.001) (0.001)

Revenue Elasticity -0.104 -0.126 1.590 1.367
Observations 4,086 4,086 4,086 4,086
ISO ✓ ✓ ✓ ✓
Year FE ✓ ✓ ✓ ✓
Terrain Ruggedness ✓ ✓
Farm Size & Value ✓ ✓
Log Likelihood -2321 -2247 -2215 -2176

Notes: Average marginal effects from logit model of tracking (0/1). Standard logit model
in columns (1) and (2). Control function in columns (3) and (4). Sample is all solar
projects at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the
difference in expected revenue from using tracking versus not. Restructured is one if
the project is located in a restructured state. Revenue elasticity is the average elasticity
of revenue across all projects. All specifications include fixed effects for operating year
and a binary indicator for ISO. Terrain ruggedness is the standard deviation of terrain
elevation. Farm Size & Value are county level average farm size and value per acre.
Bootstrap standard errors with 1000 replications in parentheses for columns (3) and (4).
Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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F.6 Results without conditioning on prices

Table F8: Logit regression of tracking on market structure without conditioning on prices

Logit

(1) (2)

∆ Production (GWh) 0.318*** 0.264***
(0.018) (0.022)

∆ Production × Restructured -0.059*** -0.060***
(0.011) (0.012)

Observations 4,086 4,086
ISO ✓ ✓
Year FE ✓ ✓
Terrain Ruggedness ✓
Farm Size & Value ✓
Production Elasticity 1.663 1.412
Log Likelihood -2317 -2244

Notes: Average marginal effects from logit model of tracking
(0/1). Sample is all solar projects at least 1 MW in size that
began operation in 2001-2020. ∆ Production is the differ-
ence in expected production from using tracking versus not.
Restructured is one if the project is located in a restructured
state. All specifications include fixed effects for operating year
and a binary indicator for ISO. Terrain ruggedness is the stan-
dard deviation of terrain elevation and its square. Farm Size
& Value are county level average farm size and value per acre.
Bootstrap standard errors with 1000 replications in parenthe-
ses for columns (3) and (4). Significance: *** p<0.01, **
p<0.05, *** p<0.1.
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F.7 Results comparing different measures of market structure

Table F9: Logit regression of tracking on market structure

State-level
Restructuring

Competitive
Wholesale Market

Either

(1) (2) (3)

∆ Revenue ($100,000) 0.325*** 0.368*** 0.368***
(0.026) (0.023) (0.023)

∆ Revenue × Market Structure -0.043*** 0.008 0.011
(0.011) (0.008) (0.010)

Observations 4,086 4,086 4,086
Year FE ✓ ✓ ✓
Terrain Ruggedness ✓ ✓ ✓
Farm Size & Value ✓ ✓ ✓
Revenue Elasticity 2.075 2.516 2.532
Log Likelihood -2210 -2220 -2220

Notes: Average marginal effects from logit model of tracking (0/1). Sample is all solar projects
at least 1 MW in size that began operation in 2001-2020. ∆ Revenue is the difference in expected
revenue from using tracking versus not. All specifications are corrected for revenue endogeneity
using a control function approach. State-level restructuring is a dummy variable for if the project
is in a restructured state. Competitive Wholesale Market is an indicator for being located in the
footprint of a competitive wholesale market. Either is the union of the two. All specifications
include fixed effects for operating year. Terrain ruggedness is the standard deviation of terrain
elevation and its square. Farm Size & Value are county level average farm size and value per
acre. Bootstrap standard errors with 1000 replications in parentheses for columns (3) and (4).
Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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G Robustness checks for wind results

G.1 Results controlling for developer size

Table G10: Effect of market structure on turbine rotor diameter (m)

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured 0.308 -2.921* -2.110** -2.707* -2.751*
(0.747) (1.519) (1.019) (1.394) (1.458)

Major Developer -0.203 -1.216 -0.688 -1.109 -1.274
(0.709) (0.797) (0.696) (0.758) (0.788)

Long-term contract 1.766**
(0.743)

R2 0.678 0.764 0.718 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05
Observations 842 842 842 842 842
Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. Sample is all wind projects at least 5 MW in nameplate capacity
that began operating in 2001-2020. Restructured is a dummy variable for if the project is in
a restructured state. Major developer is an indicator for whether the project is developed by
one of the top 5 developers. Long-term contract is a dummy variable if the project signed
a long-term contract to see its power. All specifications include fixed effects for operating
year, binary indicator for ISO, and for the presence of wind ordinance at the project location.
Wind controls include hourly average wind speeds and wind direction at 80m and 100m, and
standard deviation of wind speeds at 80m and 100m. Robust standard errors reported in
parenthesis. Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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G.2 Results excluding utilities

Table G11: Effect of market structure on turbine rotor diameter (m)

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured 0.277 -2.719* -1.432 -1.839 -2.125
(0.813) (1.617) (0.976) (1.491) (1.534)

Long-term contract 1.480
(0.921)

R2 0.694 0.796 0.705 - -
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05
Observations 705 705 705 705 705
Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using
Lasso to select wind controls, and Columns (4) and (5) uses double selection to correct
for omitted variable bias in Naive Lasso. Sample is all wind projects at least 5 MW in
nameplate capacity that began operating in 2001-2020. Restructured is a dummy variable
for if the project is in a restructured state. Long-term contract is a dummy variable if the
project signed a long-term contract to see its power. All specifications include fixed effects
for operating year, binary indicator for ISO, and for the presence of wind ordinance at the
project location. Wind controls include hourly average wind speeds and wind direction at
80m and 100m, and standard deviation of wind speeds at 80m and 100m. Robust standard
errors reported in parenthesis. Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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G.3 Results accounting for price effects

Table G12: Effect of market structure on turbine rotor diameter (m)

Dependent variable: Rotor Diameter (m)

OLS
Naive
Lasso

Double
Selection

(1) (2) (3) (4) (5)

Restructured 0.174 -3.085** -1.769* -2.698* -2.500*
(0.756) (1.495) (1.028) (1.430) (1.443)

Realized price ($/MWh) 0.012 -0.010 0.005 -0.010 -0.014
(0.013) (0.018) (0.015) (0.018) (0.018)

Long-term Contract 1.565**
(0.757)

R2 0.679 0.764 0.715
Mean Rotor Diameter (m) 91.05 91.05 91.05 91.05 91.05
Observations 841 841 841 841 841
Year FE ✓ ✓ ✓ ✓ ✓
ISO ✓ ✓ ✓ ✓ ✓
Wind Controls ✓ ✓ ✓ ✓

Notes: Columns (1) and (2) are the coefficient estimates of the OLS regression with rotor
diameter as the dependent variable. Column (3) shows coefficient estimate from using Lasso
to select wind controls, and Columns (4) and (5) uses double selection to correct for omitted
variable bias in Naive Lasso. The penalty term (λ) for Lasso in double selection and ‘Naive
Lasso’ is selected using 10 fold Cross Validation. Sample is all wind projects at least 5 MW
in nameplate capacity that began operating in 2001-2020. Restructured is a dummy variable
for if the project is in a restructured state. Realized price ($/MWh) is the REC adjusted
resale price that a project receives. All specifications include fixed effects for operating year,
binary indicator for ISO, and for the presence of wind ordinance at the project location.
Wind controls include hourly average wind speeds and wind direction at 80m and 100m, and
standard deviation of wind speeds at 80m and 100m. Robust standard errors reported in
parenthesis. Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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G.4 Results comparing different measures of market structure

Table G13: Effect of market structure on turbine rotor diameter (m)

Dependent variable: Rotor Diameter (m)

State-level
Restructuring

Competitive
Wholesale Market

Either

(1) (2) (3)

Market Structure -2.985** -2.568 -2.832
(1.450) (1.813) (1.782)

Mean Rotor Diameter (m) 91.05 91.05 91.05
Observations 842 842 842
Year FE ✓ ✓ ✓
Wind Controls ✓ ✓ ✓

Notes: All specifications show coefficient estimates from double selection model with the
penalty term (λ) selected using 10 fold Cross Validation. Sample is all wind projects
at least 5 MW in nameplate capacity that began operating in 2001-2020. State-level
restructuring is a dummy variable for if the project is in a restructured state. Competi-
tive Wholesale Market is an indicator for being located in the footprint of a competitive
wholesale market. Either is the union of the two. All specifications include fixed effects
for operating year and an indicator for the presence of wind ordinance at the project
location. Wind controls include hourly average wind speeds and wind direction at 80m
and 100m, and standard deviation of wind speeds at 80m and 100m. Robust standard
errors reported in parenthesis. Significance: *** p<0.01, ** p<0.05, *** p<0.1.
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